
z/VM

REXX/VM User’s Guide
version 6 release 1

SC24-6222-00

���

z/VM

REXX/VM User’s Guide
version 6 release 1

SC24-6222-00

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page 197.

This edition applies to version 6, release 1, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC24-6114-01.

© Copyright International Business Machines Corporation 1991, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

About This Document . xiii
Intended Audience . xiii
How to Read Syntax Diagrams xiii

Message and Response Notation xv
Where to Find More Information xvi

How to Send Your Comments to IBM xvii
If You Have a Technical Problem xvii

Chapter 1. Introduction . 1
What is REXX? . 1

Features of REXX . 1
REXX and z/VM . 2

About Programming . 2
The Reading Plan . 3

If You Have Never Written a Computer Program... 3
If You Are Already Familiar with Another Language... 3
Exercises and Examples . 4
The REXX Reference . 4

Chapter 2. Starting Out with REXX 5
How a Program Works . 5
Conversations. 5

Typing in a Program . 6
Running a Program. 7
Stopping a Program . 8
Test Yourself... 8

What Goes into a Program . 8
Comments in Programs . 8
Keyword Instructions . 9
Literal Strings . 9
Clauses . 11
Syntax Errors . 12
Test Yourself... 13
Substitution Rules . 14

Repeated Substitution . 15
The VALUE() Function. 15
Compound Symbols . 15
The INTERPRET Instruction 16

Chapter 3. Variables . 17
What Are Variables? . 17

Names and Values . 18
Assignments . 18

Displaying a Variable’s Value. 19
Choosing Names for Variables 20
Example: Setting Variables 20
Test Yourself... 21
Other Assignments . 21

© Copyright IBM Corp. 1991, 2009 iii

Variables as Symbols . 23
Constants and Variables . 23

Compound Symbols . 24
Stems and Tails . 24
Derived Names. 24
Creating an Array . 25
Test Yourself... 27

Avoiding Duplicate Names. 29
How Much Should You Tell Your Subroutine? 30

The PROCEDURE Instruction 30
The PROCEDURE EXPOSE Instruction. 31

The Existence of Variable Names 32
The SYMBOL() Function . 32
The DROP Instruction . 32

Arrays with More Than One Dimension 33

Chapter 4. Expressions . 35
Operators . 35

Operators and Terms . 36
Order of Evaluation . 36
Parentheses . 37
Test Yourself... 37
Tracing . 37
Data Types . 39
Prefix Operators . 40
Priority of Operators . 40
Using Parentheses . 41
Test Yourself... 41

True and False . 41
Comparisons . 42
Using True and False . 42
The Equal Sign (=) . 42
The AND (&) Operator . 43
The OR (|) Operator . 43
Test Yourself... 43
Logical Operators . 44
Test Yourself... 45

Functions . 45
The Idea of a Function . 46
Built-in Functions . 47
User-Written Functions . 47
Test Yourself... 47
Writing Your Own Functions 48
ARG Instruction . 48
The ARG() Function . 48
RETURN Instruction . 48
Test Yourself... 50
A Square Root Function . 51
Internal Functions . 52
Functions Written in Assembler Language 53

Loops . 53
The DO Instruction . 53
A DO UNTIL Loop. 54
Getting Out of Loops. 54
Test Yourself... 55

Arithmetic . 56

iv z/VM: REXX/VM User’s Guide

Numbers . 57
Checking Your Input . 57
Addition, Subtraction, Multiplication 58
Division . 58
Range of Numbers . 59
Exponential Notation . 60
Test Yourself... 60
Formatting Numeric Output 61
Specifying Conventional (Fixed Point) Notation 63
Specifying Exponential (Floating Point) Notation. 63
Test Yourself... 63
Exponentiation . 64
The NUMERIC DIGITS Instruction 65
The SIGN() Function . 65
Rounding and Truncation . 65
Test Yourself... 66

Groups of Instructions . 67
Text . 67

Concatenation . 68
The SUBSTR() Function . 68
The LENGTH() Function . 68
The COPIES() Function . 69
The LEFT() Function . 69
The RIGHT() Function . 69
Arranging Your Output in Columns. 69
Test Yourself... 70
Using a Subroutine to Simplify Tabulation 71
The POS() Function . 72
Example . 72
Words . 73
The WORDPOS() Function 74
Providing Help . 74
Test Yourself... 75
The OVERLAY() Function 76
The WORDS() and WORD() Functions 77

Comparisons . 79
General . 80
Numbers . 80
Characters . 80
Test Yourself... 80
The COMPARE() Function 81
The ABBREV() Function . 81
Test Yourself... 82
Exact Comparisons . 82
Fuzzy Arithmetical Comparisons 83

Translation . 83
Hexadecimal. 84
Conversion . 84
Character Sets . 86
The VERIFY() Function . 87

Chapter 5. Conversations . 89
The SAY Instruction . 89
The PULL Instruction . 90

The UPPER Instruction . 90
Test Yourself... 91

Contents v

Parsing Words . 92
The Period as a Placeholder 93
Test Yourself... 94

Getting Data from the Command Line 94
Mixed Case . 95
Recognizing Options . 95
String Patterns . 95
Parsing Variables and Expressions 96
Test Yourself... 97
Parsing Using Patterns . 97

Chapter 6. Commands . 99
Issuing Commands to CMS and CP 99

Clauses That Become Commands. 99
When to Use Quotation Marks. 101
CP Commands . 101
Summary . 102
Return Codes . 102
Special Variables . 104
Test Yourself... 104
Debugging Individual Commands. 104
Debugging Execs That Contain Commands 105
Making a Common Routine for Handling Return Codes 105
Getting Messages from a Repository File 106
How to Suppress Messages Issued by CMS Commands 106
A Useful Subroutine . 107
Test Yourself... 108

Using the Program Stack. 109
Definitions . 110
Buffers . 111
How to Use the Program Stack 112
Example: A CMS Command That Puts Data onto the Program Stack . . . 113
Example: A CMS Command That Requires Data from the Program Stack 114

CP Commands . 115
How to Suppress Messages Issued by CP Commands 115
How to Obtain the Reply from a CP Command. 116

The COMMAND Environment 118

Chapter 7. XEDIT . 121
XEDIT Subcommands and Macros 121

XEDIT Macros . 122
Naming of XEDIT Macros 122
Example: Changing the Settings of the Scroll Keys 122
Return Codes . 123
Messages . 123

The EXTRACT Subcommand 124
The Current Line. 124
An Example: Moving through a File a Paragraph at a Time 125

Your XEDIT Profile . 125
Menus Using XEDIT . 126

Chapter 8. Control . 129
Selection . 129

The IF Instruction . 130
The ELSE Keyword. 131
The Dangling ELSE. 132

vi z/VM: REXX/VM User’s Guide

Test Yourself... 133
The SELECT Instruction . 134
Example . 135
The NOP Instruction . 136
Test Yourself... 137

Loops . 138
Simple Repetitive Loops . 139
Using a Control Variable . 140
The BY Expression . 141
Test Yourself... 141
Conditional Loops: The LEAVE Instruction 143
Conditional Loops: The DO WHILE Instruction 144
Conditional Loops: The DO UNTIL Instruction 145
Conditional Loops: The Choice 145
Test Yourself... 146
Compound DO Instructions 146
Leaving a Specified Loop 147
The ITERATE Instruction . 148

The EXIT Instruction . 149
Subroutines . 150

The Idea of a Subroutine. 150
The CALL Instruction . 151
The ARG Instruction . 153
The RETURN Instruction . 153
Example . 153
When to Leave Out the Arguments 154
Test Yourself... 154
Subroutines and Functions 155
Using a Call of the Other Kind 157
Parsing the Arguments . 157
External Subroutines . 157

Jumps . 158
The SIGNAL Instruction . 159
Abnormal Changes of Control 159

Conditions and Condition Traps 159
The CALL ON Condition . 160
The SIGNAL ON Condition 160
Action Taken When a Condition is Trapped 161

The CONDITION Function . 162

Chapter 9. Input and Output 165
A Stream of Information . 165
File Processing . 166

Writing Data to a Stream . 166
LINEOUT (Line Output) Function 166
CHAROUT (Character Output) Function 168
Reading Data from a Stream 169
LINEIN (Line Input) Function 169
CHARIN (Character Input) Function 170
Counting the Data Remaining 171
LINES (Lines Remaining) Function 171
CHARS (Characters Remaining) Function 172

Handling Streams . 172
Opening and Closing Files 173

To Summarize. 173
Additional Stream I/O Information 174

Contents vii

More about Data Streams 175
Default Streams . 175

Performing Stream Tasks . 177
STREAM Function . 178
Accessing Data within a Stream 181

Techniques For Using REXX I/O Functions 182
To Open or not To Open . 182
REXX I/O and CMS . 183
Error Handling. 183
Alternate Techniques . 183

Chapter 10. Programming Style and Techniques 185
Consider the Data . 185

Test Yourself... 186
Happy Hour . 186
Designing a Program . 188

Methods for Designing Loops 189
The Conclusion . 189
What Do We Have So Far? 189
Stepwise Refinement: An Example 190
Reconsider the Data . 191

Correcting Your Program . 191
Modifying Your Program . 191
Tracing Your Program . 192

Coding Style . 192

Notices . 197
Programming Interface Information 198
Trademarks. 199

Glossary . 201

Bibliography . 203
Where to Get z/VM Information 203
z/VM Base Library . 203

Overview . 203
Installation, Migration, and Service 203
Planning and Administration. 203
Customization and Tuning 203
Operation and Use . 203
Application Programming. 203
Diagnosis . 204

z/VM Facilities and Features 204
Data Facility Storage Management Subsystem for VM 204
Directory Maintenance Facility for z/VM 204
Open Systems Adapter/Support Facility 204
Performance Toolkit for VM 205
RACF Security Server for z/VM 205
Remote Spooling Communications Subsystem Networking for z/VM 205

Prerequisite Products . 205
Device Support Facilities . 205
Environmental Record Editing and Printing Program. 205

REXX Compiler . 205

Index . 207

viii z/VM: REXX/VM User’s Guide

Figures

1. HELLO EXEC . 6
2. SHAGGY EXEC . 10
3. RAH EXEC . 12
4. HELLO2 EXEC with a syntax error . 12
5. ERRAND EXEC . 15
6. VENTS EXEC . 16
7. MATH EXEC . 16
8. TWOPLUS3 EXEC . 17
9. ADD2NUM EXEC . 18

10. ASSIGN EXEC . 19
11. NOASSIGN EXEC . 20
12. MCDONALD EXEC . 20
13. ADD EXEC . 22
14. AREAS EXEC . 22
15. TWELVDAY EXEC . 25
16. GAME EXEC . 26
17. MESSY EXEC. 29
18. COUNT Used for Two Different Purposes . 31
19. TICKETS EXEC . 32
20. CHECKERS EXEC . 34
21. TTRACE EXEC . 38
22. RTRACE EXEC . 39
23. DICEY EXEC . 40
24. SQUARE EXEC . 49
25. HALF EXEC . 50
26. SQRT EXEC . 52
27. ROOTS EXEC. 53
28. DOZEN EXEC. 54
29. NEVER EXEC . 55
30. ABRACADA EXEC . 55
31. WHATDAY EXEC . 56
32. VALNUM EXEC . 57
33. SHARE EXEC . 59
34. INVOICE EXEC . 62
35. ACCURATE EXEC . 65
36. TTRUNC EXEC . 66
37. TABLE1 EXEC . 70
38. TABLE2 EXEC . 71
39. TABLE3 EXEC . 72
40. VALIDFN EXEC . 73
41. REVERE EXEC . 74
42. MYPROG EXEC . 75
43. ORDCHARS EXEC . 77
44. XE EXEC . 78
45. Comparing Character by Character . 80
46. YEP EXEC . 82
47. NOFUZZ EXEC . 83
48. FUZZ EXEC . 83
49. NOPUNCT EXEC . 87
50. DIGITS EXEC . 87
51. CHITCHAT EXEC . 90
52. WHATDAY2 EXEC . 91
53. PARSWORD EXEC . 93

© Copyright IBM Corp. 1991, 2009 ix

54. FUSSY EXEC . 93
55. MIX EXEC . 95
56. TAKE EXEC . 96
57. PARSING EXEC . 96
58. MYPROG2 EXEC . 97
59. CHANGE EXEC . 98
60. ERASER EXEC. 100
61. ELIST EXEC . 100
62. BACKUP EXEC . 101
63. LINKHELP EXEC . 102
64. Example Subroutine . 107
65. PAIRS EXEC. 108
66. A Stack Using Push and Pull . 110
67. A Stack Using Queue and Pull . 110
68. A Stack Using Queue, Push, and Pull . 111
69. NEARFULL EXEC . 114
70. LEFT7 EXEC. 115
71. TDISK EXEC . 116
72. TEN XEDIT . 122
73. PAGE XEDIT. 123
74. DENTAL XEDIT . 123
75. HALF XEDIT . 124
76. PARA XEDIT . 125
77. PROFILE XEDIT . 126
78. TESTMENU EXEC . 127
79. SAMPMENU XEDIT . 127
80. CENSUS EXEC. 136
81. PILOT EXEC . 137
82. TRUCKER EXEC . 137
83. HANDOUTS EXEC . 139
84. RECTANGL EXEC. 140
85. TRIANGLE EXEC . 141
86. SUM EXEC . 143
87. POSN EXEC . 147
88. FADE EXEC . 150
89. CHEER EXEC . 152
90. EDDY EXEC . 167
91. CHAROUT1 EXEC . 169
92. SHOLIN1 EXEC . 170
93. SHOCHAR1 EXEC . 171
94. SHOLIN2 EXEC . 172
95. SHOLIN3 EXEC . 176
96. SHOLIN4 EXEC . 177
97. STREAM EXEC. 179
98. STREAMLP EXEC. 179
99. QRYFILE1 EXEC . 180

100. QRYFILE2 EXEC . 180
101. CHAROUT2 EXEC . 182
102. CATMOUSE EXEC . 187
103. ROTATE EXEC . 192

x z/VM: REXX/VM User’s Guide

Tables

1. Results from the REFORMAT EXEC . 64
2. Inputs and Outputs of Hexadecimal Functions . 85
3. Keywords Used in Programming Languages . 111
4. Read and Write Functions . 174

© Copyright IBM Corp. 1991, 2009 xi

xii z/VM: REXX/VM User’s Guide

About This Document

If you would like to be able to write programs, this document is for you. You will
need a terminal with access to IBM® z/VM®, and you should be reasonably familiar
with z/VM, but you need not have had any previous programming experience.

The programming language described by this document is called the REstructured
eXtended eXecutor language (sometimes abbreviated REXX). The document also
describes how the z/VM REXX/VM language processor (shortened, hereafter, to the
language processor) processes or interprets the REstructured eXtended eXecutor
language.

You will learn about:

v Contents of a REXX program, rules of syntax and substitution, and the use of
variables

v How to write expressions, use conversations, enter CMS and CP commands,
control your program, and construct and design your REXX programs

v Examples of REXX programs, and tailoring XEDIT through REXX programs.

Intended Audience
You should read this document if:

v You want to learn how to write programs but do not have any previous
programming experience

v You are familiar with other programming languages but want to learn how to use
REXX

v You have had some experience with the REXX language but want to gain more
knowledge of practical examples.

As you can see, this document is not intended for any particular user possessing
any particular title. REXX is a very powerful, yet adaptable language suited to fit
many varying programming needs.

Before reading this document, it is important for you to consider the following items:

v If you are not familiar with CMS or SFS, read z/VM: CMS Primer first.

v You will need a VM user ID and logon password.

v If you are using REXX in the GCS environment, see the z/VM: REXX/VM
Reference.

How to Read Syntax Diagrams
This document uses diagrams (often called railroad tracks) to show the syntax of
external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top
to bottom.

v The ��─── symbol indicates the beginning of the syntax diagram.

v The ───� symbol, at the end of a line, indicates that the syntax diagram is
continued on the next line.

v The �─── symbol, at the beginning of a line, indicates that the syntax diagram is
continued from the previous line.

© Copyright IBM Corp. 1991, 2009 xiii

v The ───�� symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are
optional, and items above the line are defaults. See the following examples.

Syntax Diagram Convention Example

Keywords and Constants:

A keyword or constant appears in uppercase letters.
In this example, you must specify the item
KEYWORD as shown.

In most cases, you can specify a keyword or constant
in uppercase letters, lowercase letters, or any
combination. However, some applications may have
additional conventions for using all-uppercase or
all-lowercase.

�� KEYWORD ��

Abbreviations:

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote
the part that can be omitted. If an item appears
entirely in uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR,
or KEYWORD.

�� KEYWOrd ��

Symbols:

You must specify these symbols exactly as they
appear in the syntax diagram.

* Asterisk
: Colon
, Comma
= Equal Sign
- Hyphen
() Parentheses
. Period

Variables:

A variable appears in highlighted lowercase, usually
italics.

In this example, var_name represents a variable that
you must specify following KEYWORD.

�� KEYWOrd var_name ��

Repetitions:

An arrow returning to the left means that the item can
be repeated.

A character within the arrow means that you must
separate each repetition of the item with that
character.

A number (1) by the arrow references a syntax note
at the bottom of the diagram. The syntax note tells
you how many times the item can be repeated.

Syntax notes may also be used to explain other
special aspects of the syntax.

�� � repeat ��

�� �

,

repeat ��

�� �
(1)

repeat ��

Notes:

1 Specify repeat up to 5 times.

xiv z/VM: REXX/VM User’s Guide

Syntax Diagram Convention Example

Required Item or Choice:

When an item is on the line, it is required. In this
example, you must specify A.

When two or more items are in a stack and one of
them is on the line, you must specify one item. In this
example, you must choose A, B, or C.

�� A ��

�� A
B
C

��

Optional Item or Choice:

When an item is below the line, it is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line,
all of them are optional. In this example, you can
choose A, B, C, or nothing at all.

��
A

��

��
A
B
C

��

Defaults:

When an item is above the line, it is the default. The
system will use the default unless you override it. You
can override the default by specifying an option from
the stack below the line.

In this example, A is the default. You can override A
by choosing B or C.

��
A

B
C

��

Repeatable Choice:

A stack of items followed by an arrow returning to the
left means that you can select more than one item or,
in some cases, repeat a single item.

In this example, you can choose any combination of
A, B, or C.

�� � A
B
C

��

Syntax Fragment:

Some diagrams, because of their length, must
fragment the syntax. The fragment name appears
between vertical bars in the diagram. The expanded
fragment appears in the diagram after a heading with
the same fragment name.

In this example, the fragment is named “A Fragment.”

�� A Fragment ��

A Fragment:

A

B
C

Message and Response Notation
This document might include examples of messages or responses. Although most
examples are shown exactly as they would appear, some content may depend on
the specific situation. The following notation is used to show variable, optional, or
alternative content:

xxx Highlighted text (usually italics) indicates a variable that represents the data
that will be displayed.

[] Brackets enclose an optional item that might be displayed.

{ } Braces enclose alternative items, one of which will be displayed.

About This Document xv

| The vertical bar separates items within brackets or braces.

... The ellipsis indicates that the preceding item might be repeated. A vertical
ellipsis indicates that the preceding line, or a variation of that line, might be
repeated.

Where to Find More Information
You can find more information about VM and REXX in the publications listed in the
back of this book. See “Bibliography” on page 203.

Links to Other Online Documents
If you are viewing the Adobe® Portable Document Format (PDF) version of this
document, it might contain links to other documents. A link to another
document is based on the name of the requested PDF file. The name of the
PDF file for an IBM document is unique and identifies the edition. The links
provided in this document are for the editions (PDF names) that were current
when the PDF file for this document was generated. However, newer editions
of some documents (with different PDF names) might exist. A link from this
document to another document works only when both documents reside in the
same directory.

xvi z/VM: REXX/VM User’s Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an e-mail to mhvrcfs@us.ibm.com

2. Visit the z/VM reader's comments Web page at www.ibm.com/systems/z/os/zvm/
zvmforms/webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your e-mail address
v Your telephone or fax number
v The publication title and order number:

z/VM V6R1 REXX/VM User’s Guide
SC24-6222-00

v The topic and page number related to your comment
v The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit to IBM.

If You Have a Technical Problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative.

v Contact IBM technical support.

v Visit the z/VM support Web page at www.vm.ibm.com/service/

v Visit the IBM mainframes support Web page at www.ibm.com/systems/support/z/

© Copyright IBM Corp. 1991, 2009 xvii

http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.vm.ibm.com/service/
http://www.ibm.com/systems/support/z/

xviii z/VM: REXX/VM User’s Guide

Chapter 1. Introduction

We’ll begin each chapter with a brief description of its contents.

In this chapter:
v What is REXX?
v Features of REXX
v REXX and z/VM
v How to use the reading plan.

What is REXX?
The REstructured eXtended eXecutor language, or REXX language, is a versatile,
easy to use structured programming language that is an integral part of z/VM. Its
simplicity and free format make it a good first language for beginners. For more
experienced users and computer professionals, REXX offers powerful functions,
extensive mathematical capabilities, and the ability to send commands to multiple
environments.

REXX is an adaptation of the CMS (Conversational Monitor System) EXEC 2
language; however, REXX instructions are quite different and easier to use. If you
are a newcomer to programming, you will find that it is fairly easy to learn and write
programs in REXX.

On the other hand, if you are an experienced programmer, you will find that REXX
somewhat resembles PL/I. There are a number of differences, but the main
difference is that a REXX program is interpreted (the language processor operates
on the program directly as it runs). In PL/I, the program is compiled (translated into
machine language) first, then run.

Using the REXX Compiler (which runs under CMS on z/VM), you can improve
performance, maintain code security, and improve your program’s documentation.
The REXX Compiler translates REXX source programs into compiled programs,
which run faster because they do not have to be translated while running. For
additional information on the benefits of using the REXX Compiler, see the CMS
REXX Compiler General Information manual.

Features of REXX
Ease of use: The REXX language is easy to learn and use because many
instructions are meaningful English words. Unlike some programming languages
that use abbreviations, REXX instructions are common words, such as SAY,
PULL, IF...THEN...ELSE, DO...END, and EXIT.

Free format: REXX has few rules about format. A single instruction might
span many lines or multiple instructions may be entered on a single line.
Instructions need not begin in a particular column; you can skip spaces in a line
or skip entire lines. You can type instructions in upper, lower, or mixed case. And
there is no line numbering.

Interpreted: When a REXX program runs, its language processor reads each
language statement from the source file and runs it, one statement at a time.
Languages that are not interpreted must be compiled into machine language (in
separate files) before they can be run.

© Copyright IBM Corp. 1991, 2009 1

Built-in functions: REXX supplies built-in functions that perform various
processing, searching, and comparison operations for both text and numbers.
Other built-in functions provide formatting capabilities and arithmetic
calculations.

Parsing capabilities: REXX includes extensive capabilities for manipulating
character strings. This lets your programs read and separate characters,
numbers, and mixed input.

Debugging: When a REXX program contains an error, messages with
meaningful explanations are displayed on the screen. In addition, the TRACE
instruction provides a powerful debugging tool.

REXX and z/VM
By far, the most vital role REXX plays is as a procedural language for z/VM. That
means a REXX program can be a kind of script for z/VM to follow. By using REXX,
you can reduce long or complex or repetitious tasks to a single command or
program that can be run from CMS.

REXX is a built-in feature of z/VM, so there is no installation process or separate
environment. Any REXX program can call CMS and CP commands.

Note: In an XA or XC virtual machine, REXX execs and XEDIT macros can reside
in storage above the 16MB line.

About Programming
Think of a program as a list of directions, like a recipe.

v First of all, the directions have a basic sequence: you cannot mix an omelet until
you have broken the eggs.

v In a recipe, there are some instructions that indicate actions: chopping and
mixing, for example.

v Other directions simply specify the ingredients and their proportions or
measurements: a pound of almonds, two cups of flour.

v Then there are directions to tell you how to carry out other directions.

– Some are iterative; that is, they specify repetitious actions, like stirring and
kneading.

– Some are conditional; they indicate when an action should begin or end:
“bake for 30 minutes or until brown.”

And that is all a program is: a list of directions and some directions about directions.

Now, you may think of programming as a skill practiced only by computer experts,
but that is not true. You need not know how a computer works to write a program
any more than you have to know chemistry to bake a souffle—although even a little
knowledge helps when you are troubleshooting.

You will have to take care to be very precise—in your typing as well as your
thinking—because computers are extremely literal. They simply cannot overlook
minor errors the way people can. Even so, by solving a program’s errors, you are
sure to learn more about the job you want your program to perform. And that is
useful, too.

Anyone can write a program, and anyone who uses a computer eventually finds a
good reason to do so. With even a little programming know-how, you can reduce a

Introduction

2 z/VM: REXX/VM User’s Guide

long or repetitious series of commands into a single command. Or you can
customize z/VM and other programs to work more the way you want them to.

You will see that programming helps you let the computer do the work it does best.
That is what REXX was meant for, and this book should make REXX itself that
much easier.

The Reading Plan
To assist beginners and less-experienced programmers, each subject is dealt with
at three levels: Reading 1, Reading 2, and Reading 3.

Reading 1
The first reading introduces you to all the basic concepts of REXX. You will
learn these concepts by writing programs suggested in the text. We expect
you will also write some programs for your own use.

Reading 2
The second reading expands your knowledge of the first reading’s
information and teaches you the main body of the REXX language. You will
also write, copy, and modify more programs.

Reading 3
The third reading contains information on features that are not often used or
that are specific for special kinds of programs.

To guide you through these readings, there are headings (like the one following) at
the top of each page that tell you what reading level you are on.

Reading 1

In addition, there are reminders in �reverse printing� at the beginning of each
reading. These reminders will tell you where a particular reading begins. Following
is an example.

�Reading 1�

There are also bold type reminders at the end of each reading. These reminders
will tell you where the reading ends and where you should go next.

The three-level reading scheme should help maintain your interest while you build
up your knowledge and skill.

If You Have Never Written a Computer Program...
If you are a newcomer to programming, you will find it fairly easy to learn and write
programs in REXX. Start by reading just the basics of each chapter in sequence.

When you have read all of the basics, go back and read the remainder of each
chapter to learn more about specific topics.

If You Are Already Familiar with Another Language...
Even if you are already an expert programmer, you might want to skim the basics
just to get an overview of the REXX language. Or, you may prefer to read about
individual topics, one at a time. Here are some areas you might want to investigate:
v If you are skilled in BASIC, you will want to note in particular the ways that REXX

differs from BASIC:

Introduction

Chapter 1. Introduction 3

– There is no line numbering

– There are no GOSUB or GOTO statements; use CALL and SIGNAL instead

– REXX variables have no data type.
v If you are familiar with development languages like C and Pascal, you will find

REXX somewhat similar. Again, the main difference is that a REXX program is
interpreted; that is, the source code of the program is processed line by line.
There is no compiling process (unless you purchase the compiler).

Exercises and Examples
As with any other language, you do not learn a programming language just by
reading about it. You learn it by using it, by trying it out. That is why this book will
devote a good deal of space to hands-on exercises and examples. To get the most
out of this book, set it down next to your computer and:

v Test yourself with the exercises as you read.

v Examine the sample programs in the text. Type them in just as you find them
here.

v Try out your own variations of each program. See if you can find a different—or
better—way to do what the sample program does.

The REXX Reference
The z/VM: REXX/VM Reference contains the most complete description of the
grammar of the REXX language. You will need to have your own copy of this book
on hand, so you can look up any instruction or function not completely defined here.

Think of the Reference as your dictionary for REXX and this User’s Guide as a kind
of cookbook of simple (and a few fairly sophisticated) recipes and ideas.

Introduction

4 z/VM: REXX/VM User’s Guide

Chapter 2. Starting Out with REXX

In this chapter:

Reading 1 immediately following, describes:

v How a program works

v Conversations

v Typing in a program

v Running a program

v Stopping a program

v What goes into a program

v Comments

v Keyword instructions

v Strings (in quotation marks)

v Lowercase characters (a...z)

v Blanks

v Clauses

v Syntax error.
Reading 2 on page 14, describes:

v Substitution rules.
Reading 3 on page 15, describes:

v Repeated substitution using
– The VALUE() function
– Compound Symbols
– The INTERPRET instruction.

How a Program Works
�Reading 1�

We have described a REXX program as a list of instructions to your computer,
something like a recipe. The program itself is simply a text file that you create with
a word processor or text editor.

Sometimes the computer runs a program with no guidance. Other times it may
need additional information from the operator to do its work. One way that a
computer can communicate with its user is to ask questions and then compute
results based on the answers typed in. As part of the recipe, then, the programmer
(you) can include instructions that let the computer converse with whomever is
using it.

Conversations
One way that a computer can communicate with a user is to ask questions and
then compute results based on the answers typed in. In other words, the user has a
conversation with the computer. You can easily write a list of REXX instructions that
will conduct a conversation. We call such a list of instructions a program. Figure 1
on page 6 shows a sample REXX program. What it does is ask for the user to give
his or her name. Then the program greets the user by the name given.

© Copyright IBM Corp. 1991, 2009 5

For instance, if the user types in the name Jean, the program replies Hello JEAN .
Or else, if the user does not type anything in, the reply Hello stranger! is
displayed instead.

First, you will look closely at how this program works; then you can try it for
yourself.

This sample program consists of six statements, one to each line, called clauses.
Briefly, the various pieces of the program are:

/* ... */
The first clause is a comment explaining what the program is about. All
REXX programs must begin with a begin-comment delimiter (/*). Apart from
this, comments are ignored.

say The second clause is a keyword instruction, say, that displays text on
screen.

"Hello!..."
Anything in quotation marks after say is displayed just as it is. This is called
a literal string.

pull This keyword instruction reads and stores the response entered by the
program’s user. This is the third clause.

who A variable: a name given to the place in storage where the user’s response
is stored.

if The fourth clause begins with the if instruction; it tests a given condition.

who = ""
The condition to be tested: whether the variable who is empty.

then Tells REXX to process the instruction that follows, if the tested condition is
true.

say "Hello stranger!"
Displays Hello stranger! on the screen (but only if the condition is true).

else This final clause gives an alternative direction: process the instruction that
follows, if the tested condition is not true.

say "Hello" who
Displays Hello, followed by whatever data is stored in who (if the tested
condition is not true).

That is what the program does.

Typing in a Program
To type in the following program, use the same editor as you use for other work;
any editor will do. This discussion will assume that you use XEDIT, the z/VM editor.

/* HELLO EXEC - A conversation */

say "Hello! What is your name?"
pull who
if who = "" then say "Hello stranger!"
else say "Hello" who

Figure 1. HELLO EXEC

Reading 1

6 z/VM: REXX/VM User’s Guide

The name of the program is HELLO EXEC (for now, assume that the file type must
be exec).

1. Log on to z/VM and type the command:
xedit hello exec

2. Type in the program, exactly as it is shown in Figure 1, beginning with /* HELLO
EXEC - A conversation */. Then file it using the XEDIT command:
====> file

The system will reply with the ready message:
Ready;

Now your program is ready to run.

Running a Program
If you want to run a program that has a file type of EXEC, you just type in its file
name. In this case, type hello on the command line and press Enter. Try it!

Suppose your name is Fred. Type fred and press Enter. Hello FRED is displayed.
Ready;
hello
Hello! What is your name?
fred
Hello FRED
Ready;

Here is what happens:

1. The SAY instruction displays Hello! What is your name?

2. The PULL instruction pauses the program, waiting for a reply.

3. You type fred on the command line and then press Enter.

4. The PULL instruction puts the word FRED into the variable (the place in the
computer’s storage) called who.

5. The IF instruction asks, Is who equal to nothing?
who = ""

This means, “is the value stored in who equal to nothing?” To find out, REXX
substitutes that stored value for the variable name. So the question now is: Is
FRED equal to nothing?
"FRED" = ""

6. Not true. The instruction after then is not processed. Instead, REXX processes
the instruction after else.

7. The SAY instruction displays "Hello" who, which is evaluated as
Hello FRED

Now, here is what happens if you press Enter without typing a response first.
hello
Hello! What is your name?

Hello stranger!
Ready;

Then again, maybe you did not understand that you had to type in your name.
(Perhaps the program should make your part clearer.) Anyhow, if you just press
Enter instead of typing a name:

Reading 1

Chapter 2. Starting Out with REXX 7

1. The PULL instruction puts "" (nothing) into the place in the computer’s storage
called who.

2. Again, the IF instruction tests the variable
who = ""

meaning: Is the value of who equal to nothing? When the value of who is
substituted, this scans as:
"" = ""

And this time, it is true.

3. So the instruction after then is processed, and the instruction after else is not.

Stopping a Program
Most of the programs we use in this book run pretty fast. But if you ever need to
stop a program from running further, just enter the CMS immediate command to
halt interpretation:
HI

REXX then stops running the program and returns to the CMS prompt.

Test Yourself...
Did you get your version of HELLO EXEC to run on your z/VM system? If not,
check that you have correctly typed it in. If it still does not work and you cannot
understand the error messages, ask for help. Usually, experienced users are happy
to help a beginner. At some installations the System Support people will give help
over the telephone.

Do not worry if you did not fully understand how you could use the SAY, PULL, and
IF instructions. This will be explained again later.

What Goes into a Program
You can write a program in any accessed SFS directory for which you have write
authority or on any minidisk accessed read/write.

Use the same editor as you use for other work; any editor will do. In this book, we
shall assume that you use XEDIT, the z/VM editor.

In order to explain what goes on when you run a REXX program, we have
introduced a lot of terms. There will be more, so before we go on, we will define the
ones we have used so far.

Comments in Programs
When you write a program, remember that you will almost certainly want to read it
over later (before improving it, for example). Other readers of your program also
need to know what the program is for, what kind of input it can handle, what kind of
output it produces, and so on. You may also want to write remarks about individual
instructions themselves. All these things, words that are to be read by humans but
are not to be interpreted, are called comments.

To indicate which things are comments, use:
/* to mark the start of a comment
*/ to mark the end of a comment.

Reading 1

8 z/VM: REXX/VM User’s Guide

The /* causes the language processor to stop interpreting; interpreting starts again
only after a */ is found, which may be a few words or several lines later. For
example,
/* This is a comment. */
say ... /* This is on the same line as the instruction */
/* Comments may

occupy more
than one line. */

Comments with Special Meaning to CMS
The first line of a REXX program must start with a comment. Why?

Historically, there are three languages that can be used for writing execs for z/VM.
The oldest is called CMS EXEC; the next is EXEC 2; and the latest is REXX. For
technical reasons, they all have a file type of EXEC. Because each type of exec
requires its own special processing, CMS must be able to distinguish one type from
another. It does this by looking at the first line of the exec file. So, to tell CMS that
your program is written in REXX, the first line of the file must start with a comment.
/* This is a REXX program. */

Although /* */ is sufficient, a better use for this space is to provide a brief
description of your program. You can even do it this way:
/*************************************
* HELLO EXEC written by Denise B. *
* May 12, 1994 *
* A program to greet a user by name. *
*************************************/

Keyword Instructions
Words like PULL, IF, and SAY are part of the REXX language called instructions.
The words themselves are referred to as keywords. You will notice that they are
usually (though not always) verbs. They are the directions that tell REXX what to do
with this or that information at a certain point in the program:

Say (display on screen) “hello”.
Pull (accept and store) information from the user.
If this situation true, then perform this action.

When you list these instructions in the order you want REXX to carry them out, you
have a program.

Clauses
In a more formal sense, we say that a REXX program is made up of clauses—that
is, a complete instruction, including the information it works on and any options that
may be used. REXX reads each individual clause and then processes it before
going on to the next. That is why we say that REXX is an interpreted language.

In the sample program just given, each line of text corresponds to a single clause.
REXX allows exceptions to this (they are discussed in detail on page 11). For
clarity’s sake, we will follow the convention of one clause to a line. This is the case
for all the examples in this book, except where explicitly noted.

Literal Strings
When REXX finds a quotation mark (either " or ') it stops processing and looks
ahead for the matching quotation mark. The string of characters inside the matching
quotation marks is used just as it is. Hence, the name literal string. Examples of
literal strings are:

Reading 1

Chapter 2. Starting Out with REXX 9

v 'Hello'
v "Final result:"

If you want to use a quotation mark within a literal string, use quotation marks of
the other kind to delimit string as a whole.
v "Don't panic"
v 'He said, "Bother"'

There is another way. Within a literal string, a pair of quotation marks (the same
kind that delimits the string) is interpreted as one of that kind.
v 'Don''t panic' (same as "Don't panic")
v "He said, ""Bother""" (same as 'He said, "Bother"')

Uppercase Translation
When a clause is processed, any letters that are not in quotation marks are
translated to uppercase. In other words, the letters

a, b, c, ... z

get changed to

A, B, C, ... Z

REXX also ignores some of the blanks that you may have written into your
program, keeping only one blank between words. If this is not what you want, you
should use quotation marks. Figure 2 shows an example.

When you run the SHAGGY program, here is what appears on your screen:
shaggy
A LONG STORY
A long story
ABOUT A DOG
Ready;

One more point: Remember in the sample program how the user’s input fred got
changed to FRED? That had nothing to do with the process we just described.
Rather, that particular translation is a feature of the pull instruction, which always
converts user input to uppercase. The practical value of this is that the user can
type in any combination of uppercase and lowercase letters.

Variables
When we need to work with changeable information (such as the user’s name in
HELLO EXEC), we can reserve a place in storage. That memory niche is called a
variable.

/* SHAGGY EXEC */

/* Example: cases and spaces */
say a long story /* Result if "a," "long," and */

/* "story" have not been */
/* assigned a value. See */
/* Example: Setting Variables */
/* on page 20 */

say "A long story" /* Quotation marks mean to */
/* print exactly as entered. */

say about" "a dog

Figure 2. SHAGGY EXEC

Reading 1

10 z/VM: REXX/VM User’s Guide

When REXX processes a clause containing a variable, it substitutes the variable
name with the stored data. That is how the stored entry FRED took the place of the
variable name who in our first example.

We will cover variables in more depth in Chapter 3, “Variables,” on page 17.

Clauses
Your REXX program consists of a number of clauses. A clause can be:

1. An instruction that tells the language processor to do something; for example,
say "the word"

In this case, the language processor will display the word on the user’s screen.

2. An assignment; for example,
Message = 'Take care!'

This means that the string Take care! is to be put into a place
called MESSAGE in the computer’s storage.

Because MESSAGE can be given different values in different parts of the program,
it is called a variable (discussed in Chapter 3, “Variables,” on page 17).

3. A label, which is a name followed by a colon; for example,
MYSUB:

(Labels are discussed in “The CALL Instruction” on page 151 and “The SIGNAL
Instruction” on page 159).

4. A null clause, such as a completely blank line, or
;

Note: Anything that is not one of these (an instruction, an assignment, a label,
or a null clause) is taken to be:

5. A command; for example,
erase hello exec

Commands are passed to CMS (or other environments; discussed in “Issuing
Commands to CMS and CP” on page 99).

When Does a Clause End?
It is sometimes useful to be able to write more than one clause on a line, or to
extend a clause over many lines. The rules are:

v Usually, each clause occupies one line.

v If you want to put more than one clause on a line you must use a semicolon (;)
to separate the clauses.

v If you want a clause to span more than one line you must put a comma (,) at the
end of the line to indicate that the clause continues on the next line. The comma
cannot, however, be used in the middle of a string or it will be interpreted as part
of the string itself. The same situation holds true for comments.

What will you see on the screen when this exec is run?

Reading 1

Chapter 2. Starting Out with REXX 11

(If you are not sure, use XEDIT to create a file called RAH EXEC and try out the
program.)

Syntax Errors
The rules governing the arrangement of words and punctuation marks in a
language are called its syntax. The actions we have been describing are part of the
syntax for the REXX language. If REXX encounters something that does not make
sense according to its syntax, it stops running your program and returns to CMS.
REXX then displays the incorrect instruction line and an error message saying what
is wrong.

We will go back to our sample program. Suppose we alter it to read so:

There is a syntax error here. We have forgotten to put a */ at the end of the third
comment. When we run the program, what appears on the screen is:
hello
Hello! What is your name?

3 +++ pull who /* Get the answer!if who = "" then say "Hello
stranger"else say "Hello" who
DMSREX453E Error 6 running HELLO EXEC, line3: Unmatched "/*" or quotation mark
Ready(20006);

Here is what the error message means:

v 3 +++ means the language processor was interpreting the clause that started on
line 3. (The clause itself is displayed following the +++.)

v Error 6 gives the REXX error number.

The error message gives you a good idea what went wrong. If you need more
information, look up Error 6 in the list of error messages in the back of your
z/VM: REXX/VM Reference.

v Ready(20006); is the return code that the language processor returns to CMS.

Leaving out a final quotation mark at the end of a literal string causes REXX to
issue a similar error message.

/* RAH EXEC */

/* Example: there are six clauses in this program */
say "Everybody cheer!"
say "2"; say "4"; say "6"; say "8";
say "Who do we",
"appreciate?"

Figure 3. RAH EXEC

/* HELLO2 EXEC */

/* A conversation */
say "Hello! What is your name?"
pull who /* Get the answer!
if who = "" then say "Hello stranger"
else say "Hello" who

Figure 4. HELLO2 EXEC with a syntax error

Reading 1

12 z/VM: REXX/VM User’s Guide

Test Yourself...
1. Read the following program carefully. Take a pencil and write down what each

word is and what REXX will do with it, depending on how the user responds.

Now create a file called WHOAMI EXEC and try out the program. Did
everything happen as you expected? If not, read this chapter again and then
study the explanation below.

2. This next program has an error in it. Type the program in and run it.

Use the error number to look up the cause of the error in your z/VM: REXX/VM
Reference. Correct the error and test the program again.

Answers:
1. The syntax of the program WHOAMI EXEC is:

v /* WHOAMI EXEC */ is a comment describing the program. (The first line of
a REXX program must start with a comment.)

v The say instruction displays, What is my name?

v pull is another instruction. The variable guess gets the value entered by the
user.

v The if instruction checks to see if the user entered REXX.

Note: Because pull translates the entry to uppercase, the user can type it in
any combination of uppercase and lowercase letters (rexx, Rexx, rExX,
and so on).

v If so (if GUESS = 'REXX'), then You win! is displayed.

v If the user enters something other than REXX, then the clause beginning with
else say is interpreted and the result is displayed.

– no but is changed to uppercase. It is a string, but it is not in quotation
marks. It is displayed as: NO BUT

– guess is the name of a variable. The user’s entry, translated to uppercase,
is substituted.

– "is a good guess." is a literal string. It is displayed just as it is, even
though GUESS is also the name of a variable.

Here is what actually appears on the screen if the user guesses right:

/* WHOAMI EXEC */

/* Who Am I? game */
say "What is my name?"
pull guess
if guess = "REXX" then say "You win!"
else say no but guess "is a good guess."

/* TROUBLE EXEC */

/* Example: a syntax error */
say Unfortunately, there is an error here

Reading 1

Chapter 2. Starting Out with REXX 13

whoami
What is my name?
rexx
You win!
Ready;

But if the user guesses wrong:
whoami
What is my name?
spot
NO BUT SPOT is a good guess.
Ready;

Now, what happens if the user types nothing, but just presses Enter?
whoami
What is my name?

NO BUT is a good guess.
Ready;

The variable GUESS was empty, so the say instruction displayed nothing. Only
two blanks remain—the ones before and after the variable in the program.

That last response does not make much sense. See if you can think of a way to
fix WHOAMI EXEC so that it does. (A hint: take another look at HELLO EXEC).

2. The error number for the program TROUBLE EXEC is 37. The error message
reads Unexpected ","or ")".

Obviously, REXX found a comma where it did not belong. What may not be
obvious is what to do about it. When you get a message like this, turn to the
z/VM: REXX/VM Reference. In the back of the book, you will find a list of error
messages and explanation of their causes.

In this case, the comma has a special meaning for REXX when it is used
outside of a literal string (this is described on page 11). For a comma to be
used as it is intended here, it would have to be enclosed in matching quotation
marks.

Reading 1 continues in Chapter 3, “Variables,” on page 17.

�Reading 2� begins here.

If you would like to review Reading 1 of this section, read Chapter 2, “Starting Out
with REXX,” on page 5.

If you wish to start Reading 2, continue on.

Substitution Rules
When replacing the names of variables with their values, the language processor
does not look at the words it substitutes to see if they are also the names of
variables.

For example:

/* TROUBLE2 EXEC */

/* Example: a syntax error fixed */
say "Unfortunately, there is an error here"

Reading 1

14 z/VM: REXX/VM User’s Guide

food = meat
meat = steak
steak = sirloin
say "Buy us some" food /* says "Buy us some MEAT" */

This rule applies to simple symbols. Compound symbols, discussed on page 15
(and in more detail on page 24), provide a further level of substitution.

Reading 2 continues in Chapter 3, “Variables,” on page 17.

Repeated Substitution
�Reading 3� begins here.

For repeated substitution, you can use
v The VALUE() function
v Compound symbols
v The INTERPRET instruction.

The VALUE() Function
To specify a computed value as the name of a variable, use the VALUE() function.
The example on page 14 could be redesigned like this:

Compound Symbols
Many programmers who use REXX are familiar with compound symbols, but only a
few have ever used the VALUE() function. Therefore, when you find a program
that can be coded using either method, choose compound symbols.

/* ERRAND EXEC */

/* Example: the name of the name of ... */
food = meat
meat = steak
steak = "sirloin"
say "Buy us some" value(food) ||,

"; I mean some" value(value(food))"."

/* says "Buy us some STEAK; I mean some sirloin." */

Figure 5. ERRAND EXEC

Reading 2

Chapter 2. Starting Out with REXX 15

The same example could have been coded:
frontdoor = open; ...

say adjective noun "is" value(adjective||noun)

This is less familiar, though still readable.

The INTERPRET Instruction
To use a computed value as though it were a line in an exec file, use the
INTERPRET instruction.

�� INTERPRET expression ��

The specified expression is evaluated and the result is interpreted. (For a complete
description, see the z/VM: REXX/VM Reference.)

Here is an example:

To avoid confusing anyone reading your programs, it is better not to use
INTERPRET in situations where a simple VALUE() or a CALL would do instead.

Reading 3 continues in Chapter 3, “Variables,” on page 17.

/* VENTS EXEC */

/* Part of a ventilation monitor. The user can query */
/* settings of certain ventilators. */

vent.front.door = open; vent.back.door = shut
vent.front.window = open; vent.back.window = open

do until noun ¬= ""
say "Enter command"
pull verb adjective noun /* user enters */

end /* "query front door" */

if abbrev("QUERY",verb,1) then
say adjective noun "is" vent.adjective.noun

/* says "FRONT DOOR is OPEN" */

Figure 6. VENTS EXEC

/* MATH EXEC */

/* Simple calculator */
say "Please enter an expression to be evaluated."
say "Enter a null line to end:"
do forever

parse pull expr
if expr='' then leave
interpret "Say" expr

end

Figure 7. MATH EXEC

Reading 3

16 z/VM: REXX/VM User’s Guide

Chapter 3. Variables

Variables are a means of handling changeable information by representing it in
terms of symbols. In this chapter, we will see why that is important when writing
programs; then we will describe the basic rules for using variables.

In this chapter:

Reading 1 immediately following, describes:

v What a variable is and how to assign values to them.
Reading 2 on page 23, describes:

v How to use variables as symbols

v How to use compound symbols to build arrays

v How to avoid duplicate names.
Reading 3 on page 30, describes:

v How to limit the scope of variable names with the
PROCEDURE instruction

v How to find out whether a particular symbol is the name of a
variable

v How to DROP a variable

v How to build arrays with more than one dimension.

What Are Variables?
�Reading 1�

One basic requirement of any program is that it must work with unknown
information—unknown, that is, when the program is written.

For example, you could write a program that simply totals a fixed list of numbers,
like this:

and you would get the result 5 every time you ran it.

But that is all you would get: a reliable program, but not a very useful one. More
useful is a program that can process different information each time it is run. You do
this by using variables to stand in for values to be processed. A variable is a symbol
(one or more characters) that represents a value.

Take as an example this program, the simplest calculator you will ever see:

/* TWOPLUS3 EXEC */
/* the sum of two and three */
say "2 + 3 equals" 2 + 3

Figure 8. TWOPLUS3 EXEC

© Copyright IBM Corp. 1991, 2009 17

Here is what it looks like when you run it:
add2num
Enter a number:
25
Enter another number:
32
The sum is 57
Ready;

We used two PULL instructions to let the user enter the two numbers to be added
and then assign (store) them in the variables first and second. The SAY instruction
displays the sum of the two.

You can see for yourself what this program does if the user enters only one
number. For this program to be anywhere as reliable as TWOPLUS3 EXEC, it will
have to make certain that the user has entered the input numbers properly. That is
an important topic in itself, but one we will leave for later chapters.

Right now, we will look at how you can use variables to manipulate information.

Names and Values
The information stored in a variable is called its value. The value might be one or
more words of text, or it might be a number. It might be nothing at all.

A variable’s value can change any time you want it to. It can be different each time
the program is run, or it may change many times in a single run.

But no matter how the value of a variable changes, the variable’s name stays the
same. We made up the names we chose for the variables, first and second. The
names need only be meaningful to the programmer—you.

You can think of a variable, then, as simply the name for the kind of values you
want it to hold.

Assignments

An instruction that stores a value in a variable or changes its value is called an
assignment.

The simplest form of assignment is the equals sign, a REXX clause of the form
name = value

where:

name is the name you give the variable

value is the value it will hold.

/* ADD2NUM EXEC */
/* the sum of two numbers */
say "Enter a number:"
pull first /* waits for entry */
say "Enter another number:"
pull second /* waits for entry */
say "The sum is" first + second

Figure 9. ADD2NUM EXEC

Reading 1

18 z/VM: REXX/VM User’s Guide

In more formal terms, the syntax of an assignment looks like this:
symbol = expression

where:

symbol is a valid variable name

expression
is the information to be stored: a number, a string, or some calculation that
you want REXX to perform.

We will cover expressions in more detail in the next chapter. For the time being, all
you need to know is that REXX first evaluates (computes) the expression and then
puts the result of that evaluation into the variable called symbol. In plain English,
the assignment instruction says:

“Evaluate the expression and store the result as symbol”.

In an assignment, then, you name a variable and give it a value. Here are some
examples:

v To give the variable called TOTAL the value 0, use this kind of assignment:
total = 0

v To give another variable, called PRICE, the same value as TOTAL, assign the value
this way:
price = total

v To give the variable called TOTAL a new value, namely the old value of TOTAL plus
the value of SOMETHING, use the assignment:
total = total + something

v Here is a different kind of assignment, one we have already used:
pull something

This PULL instruction gives the variable SOMETHING a value that the user enters
while the program is running.

Displaying a Variable’s Value
To display a variable’s value at any given point in a program, use the SAY
instruction.

What if you SAY a variable that has not yet been assigned a value? In some
languages, you would get an error. In REXX, the default value of a variable is its
own name, converted to uppercase letters.

/* ASSIGN EXEC */
/* some assignments */
amount = 100 /* assigns 100 to AMOUNT */
money = "dollars" /* assigns "dollars" to MONEY */
say amount money /* displays "100 dollars" */
amount = amount + 25 /* adds 25 to AMOUNT */
say amount money /* displays "125 dollars" */

/* Now get some input from the user */

say "Type a line, then press Enter" /* prompts the user to type */
pull anything /* waits for user to press Enter */
say "You typed:" anything /* displays the input on screen */

Figure 10. ASSIGN EXEC

Reading 1

Chapter 3. Variables 19

Note: There is another way to peek at the value of a variable while a program is
running—the TRACE instruction, used for correcting programs. We will look
at it in Chapter 4, “Expressions,” on page 35.

Choosing Names for Variables
You can choose any symbol as the name of a variable, with these restrictions:

1. The first character must be one of:

A-Z a-z @ # $ ¢ ! ? _

Note: The language processor translates lowercase characters to uppercase
before using them.

2. The rest of the characters may be any of the following:

A-Z a-z @ # $ ¢ ! ? _ . or 0-9

But you should not use a period unless you understand the rules for
“Compound Symbols” on page 24, described in Reading 2 of this chapter.

Example: Setting Variables
To make your program easy to understand, use ordinary English words for the
names of variables, as in Figure 12.

Use XEDIT to create this file called MCDONALD EXEC and try it out. Did it work? If
not, study the error messages and make sure you copied everything correctly.

In the MCDONALD EXEC BEAST and NOISE were the names of variables.

say displays a string on the screen.

pull causes the program to pause. The user may now type something in. When
the user presses Enter, whatever the user typed in is put into the
variable BEAST and the program continues.

/* NOASSIGN EXEC */
/* display unassigned variables */
say amount /* displays "AMOUNT" */
say first /* displays "FIRST" */
say price /* displays "PRICE" */
say who /* displays "WHO" */

Figure 11. NOASSIGN EXEC

/* MCDONALD EXEC */
/* Example: farmyard noises explained */
say "What animal?"
pull beast /* user enters name of animal */
select

when beast = "LAMB" then noise = "Baah! Baah! Baah!"
when beast = "DONKEY" then noise = "Eeyore!"
when beast = "PIG" then noise = "Grunt! Grunt!"
otherwise noise = "I don't exist"

end
say 'The' beast 'says' noise

Figure 12. MCDONALD EXEC

Reading 1

20 z/VM: REXX/VM User’s Guide

select
chooses one of four assignment instructions, according to the value of the
variable BEAST. The chosen instruction sets the variable NOISE.
noise = ...

(We shall discuss how to use select, when, then and otherwise later, in
“The SELECT Instruction” on page 134.)

end indicates that this is the end of the select. (To make the program easier to
read, the instructions between the select and the end are indented three
spaces to the right.)

say uses the symbols BEAST and NOISE to obtain the values of these variables
and to display them on the screen.

When the language processor finds a symbol (a word that is not in quotation marks)
it looks to see if the symbol is the name of a variable; that is, whether it has been
given a value. If so, the language processor substitutes that value for the symbol. If
not, it translates the symbol to uppercase and uses that.

The idea of a variable (such as NOISE in Figure 12) is very important in computing.
However, before we can make much more use of it we shall have to find out how
expressions are handled. This is the topic of the next chapter.

Test Yourself...
Which of the following could be used as the name of a REXX variable?
1. DOG
2. K9
3. 9T
4. nine_to_five
5. #7

Answers:
1. OK
2. OK
3. Incorrect, because the first character is a numeric digit.
4. OK, same as NINE_TO_FIVE
5. OK

Other Assignments
You can also use variables to store unknown information—unknown, that is, while
you are writing the program.

Assigning User Input
One such use for variables that we have already encountered is as a holding place
for information supplied by the user. Here are two keyword instructions commonly
used for this purpose.

The PULL Instruction: This instruction pauses the running of a program to let the
user type one or more items of data which are then assigned to variables. For
example we used PULL in Figure 9 on page 18 to get two numbers to add:
say "Enter a number:"
pull first /* waits for entry */
say "Enter another number:"
pull second /* waits for entry */

Reading 1

Chapter 3. Variables 21

Each PULL instruction pauses the program so the user can type a number and
press Enter. It then assigns the entry to the variable named in the instruction.

You can also use PULL to collect more than one item in an entry, so long as the
items are separated by spaces. We could replace the four lines above with:
say "Type two numbers (leave a space between) and press Enter"
pull first second

Here too, PULL pauses the program so the user then can then type the two
numbers to add. When the user presses Enter, PULL reads the two numbers and
assigns them, in the order they were typed, to the list of variables (first and
second). This process of reading and breaking up information is called parsing, and
we will devote much discussion to that in later chapters.

The ARG Instruction: Another way to assign data from the user is with ARG. It
works in the same manner as PULL, except that items are entered at the command
prompt along with the program name. Our mini-calculator in Figure 9 on page 18
could also work this way:

Here is how it looks when you run it:
add 20 33
The sum is 53
Ready;

Notice that with ARG, there is no pause because the numbers are entered along
with the command that starts the program.

Assigning an Expression Result
Take another look at the program ASSIGN EXEC in Figure 10 on page 19. The
instruction amount = amount + 25 demonstrates how variables can represent
another kind of unknown information: data that must be calculated or otherwise
manipulated. You can simply assign to a variable the result of a calculation or
expression. Here is another example:

Simple enough. But REXX expressions can have very complex forms as well, and
they can work with all kinds of information. They are our topic for the next chapter.

/* ADD EXEC */
/* the sum of two numbers, this time */
/* entered at the command prompt */
arg first second /* collects entries */
say "The sum is" first + second

Figure 13. ADD EXEC

/* AREAS EXEC */
/* area of a 3 by 5 in. rectangle */
area = 3 * 5
say area "sq. in." /* displays "15 sq. in." */

/* area of a 5 in. circle */
diameter = 5
radius = diameter/2
area = 3.14 * radius * radius
say area "sq. in." /* displays "19.6250 sq. in." */

Figure 14. AREAS EXEC

Reading 1

22 z/VM: REXX/VM User’s Guide

Reading 1 continues in Chapter 4, “Expressions,” on page 35.

Variables as Symbols
�Reading 2�

Variables are part of a class of REXX language elements called symbols. These
include:

v REXX keywords and instructions

v Labels used to call internal subroutines (see the discussion of the CALL
instruction on page 150)

v Constants

v Variables.

REXX uses a symbol’s context to determine if it is to be taken as a keyword or a
label or a variable. For each symbol it encounters, REXX takes the following steps
to determine how it will be handled:

1. Is the symbol the very first token in a clause? If so...

a. If it is followed by an equal sign (=), then the clause is an assignment
instruction. The symbol is a variable, and is assigned the expression that
follows the equal sign.

b. If it is followed by a colon (:), then it is a label, signaling the beginning of a
subroutine.

c. Is the symbol among the list of REXX keyword instructions?

2. Is the symbol a keyword used in a control structure? (such as WHILE or THEN;
see Chapter 8, “Control,” on page 129). If so, REXX interprets the keyword
accordingly.

3. Is it a constant (an unchangeable value)?

If none of these steps determine how the symbol is to be handled, REXX evaluates
it as a variable and substitutes its stored value for the variable name.

Constants and Variables
Symbols that begin with a digit (0-9), a period, or a sign (+ or -) are constants. They
cannot be assigned new values and therefore cannot be used as variables. Here
are some examples of constants:
77 a valid number
.0004 begins with a period (decimal point)
1.2e6 Scientific notation (equal to 1,200,000)
42nd Not a valid number; its value is always 42ND

Note that:

v A symbol that begins with a number cannot be assigned a different value; it
cannot be a variable.

v The default value for a symbol is its own name, translated into uppercase letters.
A variable that has not been assigned a value contains this default value.

v All valid numbers are constants, but not all constants are valid numbers. The
symbol 3girls is not a valid number, but neither can it be used as a variable
name; its value is always 3GIRLS.

There is a special class of symbols in which variables and constants are combined
to create groups of variables for easy processing. These are called compound
symbols.

Reading 1

Chapter 3. Variables 23

Compound Symbols
A variable containing a period is treated as a compound symbol. Here are examples
of compound symbols:
fred.3
row.column
array.I.J.
gift.day

Stems and Tails
The stem of a compound symbol is the portion up to and including the first period.
That is, it is a valid variable name that ends with a period.

The stem is followed by a tail comprising one or more valid symbols (constants or
variables), separated by periods.

Derived Names
You can use compound symbols to create an array of variables that can be
processed by their derived names. Take for example this collection:
gift.1 = "A partridge in a pear tree"
gift.2 = "Two turtle doves"
gift.3 = "Three French hens"
gift.4 = "Four calling birds"
...

Now, if we know what day it is, we know what gift will be given. Suppose, we also
assign a variable called DAY a value of 3.
day = 3

Then this instruction:
say gift.day

displays Three French hens on the screen. Sounds a bit tricky, but here is what
happens:

v REXX recognizes the symbol gift.day as compound because it contains a
period.

v REXX checks to see if the characters following the period form the name of a
variable; in this case, it is the variable name day.

v The value of day is substituted for its name, producing a derived name of GIFT.3.

v And the value of the variable GIFT.3 is the literal string Three French hens.

But note: If day had never been given a value, its value would have been its own
name, DAY, and the derived name of the compound symbol gift.day
would have been GIFT.DAY.

A collection of consecutively numbered variables like this is sometimes called an
array. Figure 15 on page 25 is an example of our gift-giver’s array in action.

Reading 2

24 z/VM: REXX/VM User’s Guide

Creating an Array
You can refer to all the variables in an array by using its stem. It is often convenient
to set all variables in an array to zero using their stem.

The example in Figure 16 on page 26 shows how compound symbols can collect
and process data. In the first part of the program, the first player’s score is entered
into SCORE.1, the second player’s into SCORE.2, and so on. Thus, using compound
symbols, the array of SCOREs is processed to give the result in the required form.

/* TWELVDAY EXEC */
/* What my true love sent ... */

/* First, assign the gifts to the days */
gift.1 = 'A partridge in a pear tree'
gift.2 = 'Two turtle doves'
gift.3 = 'Three French hens'
gift.4 = 'Four calling birds'
gift.5 = 'Five golden rings'
gift.6 = 'Six geese a-laying'
gift.7 = 'Seven swans a-swimming'
gift.8 = 'Eight maids a-milking'
gift.9 = 'Nine ladies dancing'
gift.10 = 'Ten lords a-leaping'
gift.11 = 'Eleven pipers piping'
gift.12 = 'Twelve drummers drumming'

/* list all gifts from the 12th day to */
/* the 1st day Rrefer to the discussion */
/* of loops on page 53. */
do day=12 to 1 by -1
say gift.day
end

/* now display the gift for a chosen day */
say "Enter a number from 1 to 12."
pull day

/* check for proper input */
/* See page 57. */
if ¬datatype(day,"n") then /* if the entry is not a number */

exit /* then exit the program */

if day < 1 | day > 12 then /* same if it is out of range */
exit

say gift.day

Figure 15. TWELVDAY EXEC

Reading 2

Chapter 3. Variables 25

/* GAME EXEC */
/* This is a scoreboard for a game. Any number of */
/* players can play. The rules for scoring are these: */
/* */
/* Each player has one turn and can score any number of */
/* points; fractions of a point are not allowed. The */
/* scores are entered into the computer and the program */
/* replies with */
/* */
/* the average score (to the nearest hundredth of */
/* a point) */
/* the highest score */
/* the winner (or, in the case of a tie, */
/* the winners) */
/*--*/
/* Obtain scores from players */
/*--*/
say "Enter the score for each player in turn. When all"
say "have been entered, enter a blank line!"
say
n=1
do forever

say "Please enter the score for player "n
pull score.n
select

when datatype(score.n,"whole") then n=n+1
when score.n="" then leave
otherwise say "The score must be a whole number."

end
end
n = n - 1 /* now n = number of players */
if n = 0 then exit
/*--*/
/* compute average score */
/*--*/
total = 0
do player = 1 to n

total = total + score.player
end

/* continued ... */

Figure 16. GAME EXEC (Part 1 of 2)

Reading 2

26 z/VM: REXX/VM User’s Guide

Test Yourself...
1. Write a program to say the days of the week repeatedly, as:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
...

You can use the CMS command, HI or HX, to stop it.

2. Extend this program to say the days of the month, as:
Sunday 1st January
Monday 2nd January

say "Average score is",
format(total/n,,2,0) /* format "total/n" with */

/* no leading blanks, */
/* round to 2 decimal places,*/
/* do not use exponential */
/* notation */

/*--*/
/* compute highest score */
/*--*/
highest = 0
do player = 1 to n

highest = max(highest,score.player)
end
say "Highest score is" highest
/*--*/
/* Now compute: */
/* * W, the total number of players that have a score */
/* equal to HIGHEST */
/* * WINNER.1, WINNER.2 ... WINNER.W, the id-numbers */
/* of these players */
/*--*/
w = 0 /* number of winners */
do player = 1 to n

if score.player = highest then do
w = w + 1
winner.w = player

end
end
/*--*/
/* announce winners */
/*--*/
if w = 1

then say "The winner is Player #"winner.1
else do

say "There is a draw for top place. The winners are"
do p = 1 to w

say " Player #"winner.p
end

end
exit

Figure 16. GAME EXEC (Part 2 of 2)

Reading 2

Chapter 3. Variables 27

...

Answers:
1. The simplest solution is:

Note: To stop this exec, type HX. This is the immediate command to halt
execution.

But, in view of the next question, consider a solution that uses compound
variables, like this:

2. This idea can be extended, like this:

/* DAYS1 EXEC */

/* to say the days of the week indefinitely */
do forever

say "Sunday"
say "Monday"
say "Tuesday"
say "Wednesday"
say "Thursday"
say "Friday"
say "Saturday"

end

/* DAYS2 EXEC */

/* to say the days of the week indefinitely */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"
j=0
do forever

j = j + 1
say day.j
if j = 7 then j = 0

end

Reading 2

28 z/VM: REXX/VM User’s Guide

Avoiding Duplicate Names
In any program, it is important not to use a symbol in more than one way. Here is
an extreme example. The SAY expressions show how the values of the variables
LINE and DATA change, during execution.

Looking at some sample input to this exec will help in understanding why you
should not use a symbol in more than one way. If you enter
melvin

as input to this exec, the following will be displayed:
messy
1
ENTER A 1 OF DATA
melvin
MELVIN

/* MONTH1 EXEC */

/* to say the days of the month for January */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"
do dayofmonth = 1 to 31

dayofweek = (dayofmonth+6)//7 + 1
select

when dayofmonth = 1 then th = "st"
when dayofmonth = 2 then th = "nd"
when dayofmonth = 3 then th = "rd"
when dayofmonth = 21 then th = "st"
when dayofmonth = 22 then th = "nd"
when dayofmonth = 23 then th = "rd"
when dayofmonth = 31 then th = "st"
otherwise th = "th"

end
say day.dayofweek dayofmonth||th "January"

end

/* MESSY EXEC */
/* NOT a good example */
do line = 1 to 10

say line
say Enter a line of data
pull line
say line
data = data line
say data
line = length(data)
say line

end line
say Done

Figure 17. MESSY EXEC

Reading 2

Chapter 3. Variables 29

DATA MELVIN
11
DONE
Ready;

Notice how the values of the variables LINE and DATA change. Try running the exec
again but with different input.

From this horrid mess you can learn that:

v It is safer and neater to put what you want to SAY in quotation marks.

A good example of this can be seen in the result from MESSY EXEC. Because
the expression
Enter a line of data

is not enclosed in quotation marks, the symbol, LINE, is evaluated and its value is
displayed instead. For example,
Enter a 1 of data

v Each symbol should be used for only one purpose.

In the MESSY EXEC, the language processor cannot keep track of all the
different uses of the symbols LINE and DATA. Thus, the program does not run
correctly.

For small programs it is fairly easy to limit the use of a symbol to one purpose;
however, it is more difficult to do this for large programs. We shall return to this
subject in the next reading of this chapter.

Reading 2 continues in Chapter 4, “Expressions,” on page 35.

How Much Should You Tell Your Subroutine?
�Reading 3�

When you are writing a subroutine, you may not be aware of the names of all the
variables in the main program. Of course, you could check by reading through the
whole program every time you wanted to invent a new name. But this is tedious
and prone to error.

The PROCEDURE Instruction
To make the language processor forget, for the time being, all the variables it
knows, use the PROCEDURE instruction.

After this instruction has been run, new variables can be created that will be
regarded as different, even if some of them have the same names as variables that
existed before the PROCEDURE instruction was run.

When a RETURN instruction is executed, the new variables are forgotten and the
original variables are remembered.

A PROCEDURE instruction can only be used within an internal routine; within that
routine, it can only be used one time. If the PROCEDURE instruction is used in an
internal routine, it must be the first instruction in the routine. For further details on
the PROCEDURE instruction, see the z/VM: REXX/VM Reference.

In this next example, COUNT is used for two separate purposes.

Reading 2

30 z/VM: REXX/VM User’s Guide

The PROCEDURE EXPOSE Instruction
To share a limited set of variables between the main routine and the subroutine
(leaving all the other variables protected) use:

�� PROCEDURE

�EXPOSE name

; ��

where:

name is the name of a variable to be shared. For further details, see the
PROCEDURE instruction in your z/VM: REXX/VM Reference.

For more information about sharing variables, see the GLOBALV command in the
z/VM: CMS Commands and Utilities Reference.

count = 999
list = 3 4 5 6 7

CALL average list ──────────────────────────┐
└───────────────────────────────┐ │

┌───� │ │
│ /* At this point: COUNT = 999 */ │ │
│ /* RESULT = 5 */ │ │
│ ... │ │
│ ... │ │
│ EXIT │ │
│ │ │
│ ┌───────────────────────────────────────┘ │
│
 │
│ AVERAGE: │
│ /* The argument must be a list */ │
│ /* of numbers, delimited by blanks.*/ │
│ /* The average is returned. */ │
│ │
│ PROCEDURE │
│ │
│ /* At this point the value of LIST */ │
│ /* would be LIST */ │
│ ... │
│ ... ┌───────────────────────────────────┘
│ ...

│ ARG inputlist
│ sum = 0
│ do count = 1 to words(inputlist)
│ sum = sum + word(inputlist,count)
│ end
│ ...
│ ...
│ RETURN sum/words(inputlist)
└──────┘

Figure 18. COUNT Used for Two Different Purposes

Reading 3

Chapter 3. Variables 31

The Existence of Variable Names
You can find out if a symbol already exists with the SYMBOL() function or
unassign a variable with the DROP instruction.

The SYMBOL() Function
It is sometimes useful to know whether a symbol has already been used as a name
of a variable. The SYMBOL() function returns:

BAD if the argument is not a valid symbol

VAR if the variable exists

LIT if the variable does not exist, or if the argument is a constant symbol, such
as 3D.

This example shows how to make sure that payment is never added to an empty
string, which would cause a syntax error.
if symbol("CASH") = "LIT" then cash = 0
cash = cash + payment

Notice what happens if the argument of SYMBOL() is not in quotation marks.
cash = 100
say symbol(CASH) /* says "LIT", because 100 is */

/* a literal */
say symbol("CASH") /* says "VAR", because CASH is */

/* the name of a variable */

Without the enclosing quotation marks CASH is treated as a variable, and its value is
substituted before the function is performed.

Finally, an example:

The DROP Instruction
Usually, the place where you want the language processor to temporarily hide
variables is at the beginning of subroutines. For this you can use the PROCEDURE
instruction (described earlier). But in other situations, you may want the language
processor to forget about a variable altogether. In this case, use the DROP
instruction.

�� DROP � name ; ��

where:

/* TICKETS EXEC */
/* Example: the SYMBOL() function */
firstclass = 120
secondclass = 80
do until symbol(ans||class) = "VAR"

say "What class? First or second."
pull ans

end
say "That will be" value(ans||class) "dollars, please."

Figure 19. TICKETS EXEC

Reading 3

32 z/VM: REXX/VM User’s Guide

name is name of a variable to be dropped.

You can drop more than one variable using a single DROP instruction. You can also
drop all the elements of an array by specifying the stem of the array. For example:
DROP player.

Once dropped in this way, the old values of the variables cannot be remembered.

Arrays with More Than One Dimension
You can have more than one period in a compound symbol. For example, here is
the beginning of a program that sets up a board for playing checkers. BOARD is a
2-dimensional array, 8 squares by 8 squares. The squares on the board are
called BOARD.ROW.COL and there are 64 of them altogether. The picture shows how
the “men” are set out at the start of the game.

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

Row

Column

b b

bbbb

bbbb

r r r r

rrrr

r r r r

b b

Reading 3

Chapter 3. Variables 33

Reading 3 continues in Chapter 4, “Expressions,” on page 35.

/* CHECKERS EXEC */
/* This program segment sets up a board on which the */
/* game of checkers can be played. */
/* In the internal representation, Red's "men" are */
/* represented by the character "r" and red's "kings" */
/* by the character "R". Similarly, Black's "men" and */
/* "kings" are represented by "b" and "B". */
/*--*/
/* Clear the board */
/*--*/
board. = " "
/*--*/
/* Set out the men */
/*--*/
do col = 1 by 2 to 7

board.1.col = "r"
board.3.col = "r"
board.7.col = "b"

end
do col = 2 by 2 to 8

board.2.col = "r"
board.6.col = "b"
board.8.col = "b"

end /* Now the board is set up. */

Figure 20. CHECKERS EXEC

34 z/VM: REXX/VM User’s Guide

Chapter 4. Expressions

An expression is something that can be computed. In your z/VM: REXX/VM
Reference, you will find model instructions like:
symbol = expression
SAY expression
IF expression THEN ...

When you are writing instructions in one of your programs, you can replace the
word expression with any expression that can be evaluated. Here are some
expressions:
2 + 2 /* Its value is "4" */

"A" "B" "C"
/* Its value is "A B C" */

5 < 7 /* Its value is "1", because */
/* the comparison is true */

In this chapter we discuss how to write expressions that the language processor
can compute. The rules that the language processor uses for evaluating an
expression (that is, finding its value) will be explained. The chapter is divided into
sections, namely:
v Operators
v True and False
v Functions
v Loops (see note below)
v Arithmetic
v Groups (see note below)
v Text
v Comparisons
v Conversion and translation.

Each section has its own introduction describing what is in it and advising you what
to leave until Reading 2 or Reading 3.

Note: This chapter includes brief discussions on “Loops” and “Groups of
Instructions”. These topics are included here so that you will be able to
understand some of the examples given later in this chapter. There are
further discussions on both topics later in the book (“Loops” on page 138,
Groups of Instructions in “Selection” on page 129).

Operators
In this section:

Reading 1 immediately following, describes:
v Operators and Terms
v Order of evaluation
v Parentheses.

Reading 2 on page 37, describes:

© Copyright IBM Corp. 1991, 2009 35

v Using the TRACE instruction to see how expressions are being
evaluated

v Data types
v Prefix operators
v Priority of operators
v Using parentheses.

Reading 3 skips this section.

v Continue Reading 3 in “Functions” on page 45.

Operators and Terms
�Reading 1�

An expression can include operators that operate on the adjacent terms. Here are
some operators:
+ Add
* Multiply
|| Concatenate (join together).

In this example, the operators act on the terms 4 and 3.
say 4 + 3 /* says "7" */
say 4 * 3 /* says "12" */
say 4 || 3 /* says "43" */

The terms that the operators work on can be numbers, strings in quotation marks,
variables, the results obtained from a function call, or the result that has been
obtained by evaluating the expression so far.

Order of Evaluation
Expressions are usually evaluated from left to right.

For example,
10 - 3 + 2
└───┬───┘

│
│
7 + 2
└──────┬───┘

│
│
9

In other words, the value of: 10 - 3 + 2 is: 9.

But some operations are given priority over others. The rules are generally the
same as in ordinary algebra. For example, multiply (*) has a higher priority than
subtract (-).

10 - 3 * 2
└───┬───┘

│
10 - 6
└─────┬────┘

│
4

In other words, the value of: 10 - 3 * 2 is: 4.

Reading 1

36 z/VM: REXX/VM User’s Guide

We shall discuss the rules of priority again in Reading 2 on page 40.

Parentheses
When the language processor finds an expression in parentheses, it evaluates the
value of the expression inside the parentheses first.

For example:
The value of 10 * (3 + 4) is: 70
The value of 10 * (3 || 4) is: 340.

Note, however, that if there is a symbol or a string immediately to the left of the left
parenthesis, this denotes a function. This concept is discussed later in “Functions”
on page 45.

Test Yourself...
You probably remember that if the name of a variable is found in an expression, the
value of that variable will be substituted for its name.

For example:
/* After the instructions */
something = "mice"
a = 7
say "Cats chase" something /* says "Cats chase mice" */
say a + 3 /* says "10" */

1. What will this program display on the screen?

2. What will this program display on the screen?

Answers:
1. There are 5 people in this family
2. It's easy to count up to 10

Reading 1 continues in “True and False” on page 41.

Tracing

�Reading 2�

/* PERSONS EXEC */

/* Example: simple arithmetic using variables */
pa = 1
ma = 1
kids = 3
say "There are" pa+ma+kids "people in this family"

/* COUNTING EXEC */

/* Example: simple arithmetic using variables */
thumbs = 1
fingers = 4
hands = 2
say "It's easy to count up to",

hands * (thumbs + fingers)

Reading 1

Chapter 4. Expressions 37

To find out how the language processor will evaluate an expression, use the
TRACE instruction. Some useful forms of this instruction are:

TRACE Intermediates
As each expression is evaluated, the result of each operation (that is,
Intermediate results) is displayed on the screen.

TRACE Results
When each expression has been evaluated, the final result is displayed on
the screen.

TRACE Normal
Only commands that are rejected by the environment are displayed on the
screen.

When a TRACE instruction is being interpreted, the first letter of the second word
determines what type of tracing will be switched on, and the rest of the word is
ignored.

For example, to trace intermediate results for an expression, you could write:
TRACE I
... expression
TRACE N

Here is a practical example:

This would cause the following to be displayed on your screen:
ttrace

6 *-* if x + 1 > 5 * y
>V> "9"
>L> "1"
>O> "10"
>L> "5"
>V> "2"
>O> "10"
>O> "0"

8 *-* trace N
Ready;

where:

- This is the instruction being traced. The number on the left is the line
number in your program.

>V> Value of a Variable.

>L> Value of a Literal.

>O> Result of an Operation.

/* TTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation */
x = 9
y = 2
trace I
if x + 1 > 5 * y
then say "x is big enough"
trace N

Figure 21. TTRACE EXEC

Reading 2

38 z/VM: REXX/VM User’s Guide

For Figure 21 on page 38, you can see that the final result is 0 (false). And because
the IF expression is false, the THEN clause is not executed.

To display only the final results use TRACE Results:
TRACE R
...
TRACE N

For example:

When used in the same program, this would give:
ttrace

6 *-* if x + 1 > 5 * y
>>> "0"

8 *-* trace N
Ready;

where:

>>> This is the final result.

Again, you can see that the final result is 0 (false). And because the IF expression
is false, the THEN clause is not executed.

Here is a suggested order for tracing your programs that will make it easier for you
to find errors:

1. TRACE SCAN—shows unmatched DO/ENDs, quotation marks, missing
commas, and so on.

2. TRACE !RESULTS—(use only if there are host commands)—separates host
command errors from REXX instruction errors.

3. TRACE RESULTS—checks host and REXX commands.

4. TRACE INTERMEDIATES—looks at each step.

Data Types
The values of REXX variables and expressions are always character strings.

So it is possible to write, for example:
dollars = 5
cents = 95
...
if cents < 10 then price = dollars".0"cents
else price = dollars"."cents
say "Price =" price /* says "Price = 5.95" */

/* RTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation using TRACE R */
x = 9
y = 2
trace R
if x + 1 > 5 * y
then say "x is big enough"
trace N

Figure 22. RTRACE EXEC

Reading 2

Chapter 4. Expressions 39

A string of digits is like any other character string but, when an arithmetical
operation is performed on a string, the result is rounded. (The default is to round to
nine significant digits.)

Prefix Operators
Most operators work on the terms of the expression on both sides of the operator. If
you omit either term, an error occurs. However, three operators work only on the
term that follows them:

+ Take (a number) as is

– Negate (a number)

\ ¬ Logical NOT; negates, 1 becomes 0 and 0 becomes 1.

These three operators are called prefix operators. (Notice that the characters “+”
and “–” can represent both ordinary operators and prefix operators.)

Priority of Operators
When evaluating an expression, the language processor usually works from left to
right. But some operators are given a higher priority than others.

The complete order of precedence of the operators is (highest at the top):
\ ¬ – + (prefix operators)

** (exponentiation)

* / % // (multiply and divide)

+ – (add and subtract)

" " || abuttal (concatenation, with/without blank)

== = \== ¬== (comparison operators)
/== \= ¬= /=
> < >> << ><
<> >= \< ¬<
>>= \<< ¬<<
<= \> ¬> <<=
\>> ¬>>

& (and)

/* DICEY EXEC */
/* Example: an arithmetical operation on a string of */
/* digits results in a number (rounded if necessary) */
dicey = 123456.123456 /* Assigns the 13-character */

/* string to DICEY */
say dicey /* Says "123456.123456" */
say dicey + 0 /* The expression is evaluated */

/* with an accuracy of 9 */
/* significant digits (The */
/* default). The result is */
/* "123456.123"; and this is */
/* what is displayed. */

Figure 23. DICEY EXEC

Reading 2

40 z/VM: REXX/VM User’s Guide

| && (or, exclusive or).

For any expression, you can discover the sequence that will be used from the
preceding list of priorities. For example:
Say 3 + 2*5 /* says "13" */

Because multiply (*) has a higher priority than add (+), the multiply operation is
done before the operation on its left.

Similarly, because add (+) has a higher priority than concatenate (blank),
Say 3 2+2 5 /* says "3 4 5" */

For full details see the z/VM: REXX/VM Reference.

Using Parentheses
You can use parentheses to force evaluation in a different order, because
expressions inside parentheses are evaluated first. For example:

The value of 6 – 4 + 1 is 3.
The value of 6 –(4 + 1) is 1.
The value of 3 + 2||2 + 3 is 55.
The value of 3 +(2||2)+ 3 is 28.

For full details on the use and priority of operators, see the z/VM: REXX/VM
Reference.

Test Yourself...
What is the value of:
1. 4 + 20 “tailors”
2. 24 = 4 + 20
3. “eggs” = “eggs” & 2*2 = 4
4. 3 / 2*5
5. 3 || 7+7
6. 3(2+2)
7. (2+2)3.

Answers:
1. 24 tailors (add before concatenate)
2. 1 (add before comparison)
3. 1 (comparison before AND, multiply before AND, comparison before AND)
4. 7.5 (operators that have the same priority are processed left to right)
5. 314 (add before concatenate)
6. calls the function 3 with the argument 4 (or gives a syntax error if 3 does not

exist)
7. 43 (evaluate expression in parentheses first; then abut).

Reading 2 continues in “True and False.”

True and False
In this section:

Reading 1 immediately following, describes:

Reading 2

Chapter 4. Expressions 41

v Comparisons

v Using TRUE and FALSE

v The Equal Sign

v The AND operator

v The OR operator.
Reading 2 on page 44, describes:

v The logical operators: NOT, AND and OR.

Comparisons
�Reading 1�

Comparisons are performed using the operators
> Greater than
= Equal
< Less than.

These operators can be combined with each other and with the not character (\ or
¬). The result of these comparisons is either TRUE or FALSE. For more information
see the z/VM: REXX/VM Reference.

Using True and False
If the expression is:

TRUE, the computed result is 1

FALSE, the computed result is 0.

For example:
say 4 < 7 /* says "1", meaning TRUE */
say "Chalk" = "Cheese" /* says "0", meaning FALSE */

Instructions like:
IF expression THEN

must be given an expression that computes to 0 or 1.

The following two fragments will give the same result.
ready = "YES"
...
if ready = "YES" then ...
...

or
ready = 1
...
if ready then ...
...

You can use whichever form you prefer.

The Equal Sign (=)
Notice that the equal sign (=) can have two meanings in REXX depending on its
position in a clause.

Reading 1

42 z/VM: REXX/VM User’s Guide

For example:
amount = 5 /* The variable AMOUNT gets the value 5 */
say amount = 5 /* Compare the value of AMOUNT with 5 */

/* If they are the same, says "1" */
/* Otherwise, says "0" */

The rule is, a clause beginning
symbol = ...

is an assignment. An equal sign appearing anywhere else in a clause stands for the
comparison operator. (In a comment or a string, the equal sign is simply a
character; it is not an operator.)

The AND (&) Operator
To write an expression that is only true when every one of a set of comparisons is
true, use the AND (&) operator:
If ready = "YES" & steady = "RIGHT"
then say "GO"

This means “If READY has a value of YES and STEADY has a value of RIGHT, then
say GO. Otherwise, do nothing”.

The OR (|) Operator
To write an expression that is true when any one of a set of comparisons is true,
use the inclusive OR (|) operator:
If ready = "YES" | steady = "RIGHT"
then say "GO"

This means “If either READY has a value of YES or STEADY has a value of RIGHT,
then say GO. Otherwise, do nothing”.

Test Yourself...
1. What appears on the screen when the following program is run?

2. What appears on the screen when the following program is run?

Answers:
1. What is displayed is:

/* FAIR EXEC */

/* A fair comparison */
say "Apples" = "Apples"

/* MEASURES EXEC */

/* Example: comparing numbers */
dozen = 12
score = 20
say score = dozen + 8
/* Using the AND operator */
say dozen = 12 & score = 21

Reading 1

Chapter 4. Expressions 43

fair
1
Ready;

This is because Apples is equal to Apples, so the result is 1 (true).

2. What is displayed is:
measures
1
0
Ready;

The last line of output may need some explanation. The first comparison (dozen
= 12) gives 1 (true); but the second comparison (score = 21) gives 0 (false). So
the result is 0 (false).

Remember, the AND operation gives a result of 1 (true) only if both operands
are 1.

Reading 1 continues in “Functions” on page 45.

Logical Operators

�Reading 2�

The three most frequently used logical operators are:
¬ NOT
& (ampersand) AND
| (vertical bar) OR

(There is also an Exclusive OR operator (&&), but it is not often used.)

Logical operators can only process the values 1 or 0.

The NOT (¬, \) Operator
The not operator (¬, \), is placed in front of a term and changes its value from true
to false or from false to true.
say ¬ 0 /* says "1" */
say ¬ 1 /* says "0" */
say ¬ 2 /* gives a syntax error */
say \ (3 = 3) /* says "0" */

The AND (&) Operator
The and operator (&), is placed between two terms. It gives a value of true only if
both terms are true.
say (3 = 3) & (5 = 5) /* says "1" */
say (3 = 4) & (5 = 5) /* says "0" */
say (3 = 3) & (4 = 5) /* says "0" */
say (3 = 4) & (4 = 5) /* says "0" */

The OR (|) Operator
The or operator (|), is placed between two terms. It gives a value of true unless
both terms are false.
say (3 = 3) | (5 = 5) /* says "1" */
say (3 = 4) | (5 = 5) /* says "1" */
say (3 = 3) | (4 = 5) /* says "1" */
say (3 = 4) | (4 = 5) /* says "0" */

Reading 1

44 z/VM: REXX/VM User’s Guide

Test Yourself...
1. Suggest suitable values for X and Y in this program fragment:

a. if month = "DECEMBER" & day of month = 25 then say X

b. if command = "STOP" | message = "WATCH OUT" then color of flag = Y

2. In the preceding program fragment, what happens if:
a. month = JUNE but day of month = 25?
b. command = GO but message = WATCH OUT?

3. Suitors may be TALL (or not), DARK (or not), HANDSOME (or not), and RICH
(or not). A certain princess specifies:
If TALL & DARK | HANDSOME & RICH
then say "I will marry him"

A certain prince has the following attributes:
TALL—yes
DARK—yes
HANDSOME—no
RICH—no.

If he asks for her hand (and half the kingdom, of course) what will she say? You
may need to review “Priority of Operators” on page 40.

Answers:
1. The answers are:

a. X could be Merry Christmas.
b. Y could be RED.

2. If so,
a. Nothing is said
b. COLOR OF FLAG is set to the value of Y.

3. I will marry him

The AND operator (&) has priority over the OR operator (|). In other words,
REXX computes the expression as
(TALL & DARK) | (HANDSOME & RICH)

Reading 2 continues in “Functions.”

Functions
A function call can be written anywhere in an expression. It performs the
computation named by the function and returns a result, which is then used in the
expression in place of the function call.

In this section:

Reading 1 immediately following, describes:

v The idea of a function

v REXX built-in functions

v User-written functions.
Reading 2 on page 48, describes:

v Writing your own functions

– The ARG instruction and the ARG function

– The RETURN instruction.
Reading 3 on page 51, describes:

Reading 2

Chapter 4. Expressions 45

v Including your own functions in the exec file of the program
that uses them

v Functions written in Assembler Language.

The Idea of a Function
�Reading 1�

To help explain the idea of a function, think about the fictitious function:
HALF()

For example:
The value of HALF(6) is 3.
The value of HALF(3+5) is 4.
The value of 7 + HALF(5-3) is 8.

(The full specification and code for the HALF() function will be discussed later, in
Figure 25 on page 50.)

Generally, if the language processor finds
symbol(expression ...)

in an expression, with no space between the last character of the symbol and the
left parenthesis, it assumes that symbol is the name of a function and that this is a
call to the function symbol().

The value of a function call depends on what is inside the parentheses. (It is an
error to leave out the right parenthesis). When the value of the function has been
calculated, the result is put back into the expression in place of the function call.

For example:
say 7 + HALF(6) /* becomes 7 + 3 which says "10" */
x = HALF(4 + 6) - 1 /* becomes x = 5 - 1 */
say x /* says "4" */

The expression inside the parentheses is called an argument. As you can see, an
argument can itself be an expression; the language processor computes the value
of this expression before passing it to the function.

If a function requires more than one argument, they must be separated by commas.
For instance, to obtain the greatest of a set of numbers you can use the REXX
function:

�� MAX(�

,

number) ��

For example:
The value of MAX(2,3,7,4) is 7.
The value of MAX(-9,3+4,5) is 7.

Remember that a function call, like any other expression, does not usually appear
in a clause by itself.
x = 12
y = half(x) /* makes y equal to half(x) */
half(x) /* calls "6 EXEC" if it */

Reading 2

46 z/VM: REXX/VM User’s Guide

/* exists! */
/* See page Chapter 6, “Commands,” on page 99. */

x = half(x) /* halves x */

Built-in Functions
Over 50 functions (like the MAX() function, shown previously), are built-in to
REXX. In this book, they will be introduced where you are most likely to want to use
them. For example, arithmetical functions like FORMAT() and TRUNC() appear in
the section on arithmetic. You will find a dictionary of built-in functions in your z/VM:
REXX/VM Reference. From now on, if we refer to a function without saying where
to find it, assume that it is a REXX built-in function.

User-Written Functions
You can also write your own functions. And you can use functions written by other
people in your organization.

If a function is in the same file as the program that uses it, it is called an internal
function. If it is in a separate file it is called an external function. Later, we shall see
that HALF() is an external function.

Test Yourself...
1. What is the value of:

a. HALF(HALF(26) + HALF(6))
b. MAX(3, HALF(8))
c. HALF(100)
d. HALF (100)

2. The RANDOM() function can be used for games and for statistical models. For
example, to obtain a number, chosen at random from the range 1 through 6,
you could write:
random(1,6)

Write a program called TOSS that will display either the word Heads or (just as
likely) the word Tails. Run your program a number of times. Are the results like
those you could obtain by tossing a coin?

Answers:
1. If used as an expression (for example, as part of a SAY instruction) the result

would be:
a. 8
b. 4
c. 50
d. HALF 100 (Not a function, because there is no name immediately to the left

of the left parenthesis.)

2. A simple solution would be:

/* TOSS EXEC */

/* Simulates tossing a coin */
if random(1,2) = 1
then say "Heads"
else say "Tails"

Reading 1

Chapter 4. Expressions 47

If you needed to make a lot of two-way decisions, you might make use of this
program. The CP command
set pf6 immed toss

would let you reach a decision quickly, just by pressing the Program Function
key.

Reading 1 continues in “Loops” on page 53.

Writing Your Own Functions
�Reading 2�

If you find you need a function that is not provided by REXX, you can easily write
one of your own. You will need:

v The ARG instruction (or the PARSE ARG instruction, or the ARG() function) to
obtain the arguments

v The RETURN instruction to return the result.

ARG Instruction
To obtain the arguments (that is, the computed values of the expression or
expressions inside the parentheses of the function call), use:

�� ARG � myarg ; ��

where:

myarg are the names you choose for the variables that will be given the values of
the arguments.

These values will be translated to uppercase. If you want to assign them without
translating them to uppercase, use

�� PARSE ARG � myarg ; ��

The ARG() Function
If you do not want to give names to the arguments, you can use the function:

�� ARG(
n

,option

) ��

In this way you can refer to the nth argument.

RETURN Instruction
To use the result from a function call, the data must be returned from the function
call to the main program. To return the result, use the following instruction:

Reading 1

48 z/VM: REXX/VM User’s Guide

�� RETURN
expression

; ��

The language processor computes the value of expression and returns the value to
the main program.

A function must return some data.

In this next example, the expression in the main program is a string of words. One
of the words is computed by a function.

The RETURN instruction must specify some data when returning from a function. If
the RETURN instruction does not do so, you will receive a syntax error. You can
intentionally leave out the data on the RETURN instruction if you want to warn the
user that the input arguments, if any, are incorrect.

For example, you can write:
return /* error message */

When the function is called with incorrect arguments, the RETURN instruction,
including the comment, is displayed on the screen (Error 45) followed by the line
containing the function call (Error 40).

It might be wise to check that the right number of arguments has been submitted.
This can be done using the ARG() function.
if arg() ¬= 1
then return /* wrong number of arguments */

See the ARG() function in your z/VM: REXX/VM Reference for other ways of using
this function.

/* SQUARE EXEC */
/* in main program */
height = 4
width = 4
say THIS THING IS A SHAPE(height,width) OBJECT

│ │
┌─────────────┼─────┼────────────┐
│ SHAPE EXEC │ │ │
├─────────────┼─────┼────────────┤
│

 │
│ arg first, second │
│ if first = second │
│ then return "SQUARE" │
│ │ │
└────────────────┼───────────────┘

│
/* is equivalent to */ │
/* the instruction: */ │

say THIS THING IS A SQUARE OBJECT

Figure 24. SQUARE EXEC

Reading 2

Chapter 4. Expressions 49

Test Yourself...
Here is the specification and code for the HALF() function that we discussed on
page 46.

1. Use XEDIT to create a file containing the last five lines of HALF EXEC. Write an
exec called TESTHALF that uses HALF and displays the result of:

a. Half(3) Half(4) Half(5)

b. Half(4.5)

2. Alter HALF EXEC so that it signals an error if more than one argument is
supplied. Alter TESTHALF so that it contains:
say "Testing" HALF(5,7)

Write an exec that will give you a simple set of error messages.

Answers:
1. A possible answer is:

When run, the TESTHALF EXEC gives the result:
testhalf
Case 1(a)
2 2 3
Case 1(b)

18 +++ return /* first argument is not a whole number */
DMSREX480E Error 45 running HALF EXEC, line 18: No data specified on function RE

/* HALF EXEC */

/* HALF(number) */
/* */
/* This function returns half of "number". If "number" */
/* is not even, the "big half" is returned. That is, */
/* integer division by 2 is performed and, if there is */
/* a remainder, it is added to the result. */
/* */
/* The value of HALF(6) is 3 */
/* The value of HALF(7) is 4 */
/* */
/* If "number" is not a whole number, nothing is */
/* returned. This will cause a syntax error to be */
/* raised in this program and in the calling program. */
/* */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

Figure 25. HALF EXEC

/* TESTHALF EXEC */

/* Test cases for HALF EXEC */
say "Case 1(a)"
say half(3) half(4) half(5)
say
say "Case 1(b)"
say half(4.5)

Reading 2

50 z/VM: REXX/VM User’s Guide

TURN
6 +++ say half(4.5)

DMSREX475E Error 40 running TESTHALF EXEC, line 6: Incorrect call to routine
Ready(20040);

2. A possible answer is:

The TESTHAL2 EXEC calls a modified version of HALF EXEC, named HALF2
EXEC.

When run, the HALF2 EXEC results in:
testhal2

3 +++ return /* wrong number of arguments */
DMSREX480E Error 45 running HALF2 EXEC, line 3: No data specified on function RE
TURN

2 +++ say "Testing" half2(5,7)
DMSREX475E Error 40 running TESTHAL2 EXEC, line 2: Incorrect call to routine
Ready(20040);

Reading 2 continues in “Arithmetic” on page 56.

A Square Root Function
�Reading 3�

This is an example of a function that you could code for yourself.

/* TESTHAL2 EXEC */

/* Test case for modified HALF EXEC (See Question 2) */
say "Testing" half2(5,7)

/* HALF2 EXEC */

/* */
if arg() ¬= 1
then return /* wrong number of arguments */
arg number
if datatype(number,whole)
then return number%2 + number//2
else return /* first argument is not a whole number */

Reading 2

Chapter 4. Expressions 51

Internal Functions
Instead of writing a function as a separate file, you may prefer to include it in your
main program. If the function is called many times by your main program, there will
be a perceptible improvement in performance.

Begin your function with a label. To avoid problems with duplicate names, use the
PROCEDURE instruction (see “The PROCEDURE Instruction” on page 30).

/* SQRT EXEC */
/* The SQUARE ROOT function. */
/* */
/* A function to calculate the square root of a number */
/* using the Newton-Raphson method. */
/* */
/* SQRT(number) */
/* */
/* where "number" is a nonnegative REXX number, */
/* returns the square root of "number". If the number */
/* is negative or not a decimal number, then this function will */
/* return a null character and report the error. */
arg num /* get the number */
null = ''

if ¬datatype(num,'Number') /* valid number? */
then do

say 'Invalid input argument:' Num'. Must be a positive decimal number.'
return null

end

if num < 0 /* check for negative */
then do

say 'Invalid input argument:' Num'. Must be a positive decimal number.'
return null

end
else if num = 0 then

return 0 /* check for 0 */

xnew = num /* initialize answer */

/* calculate maximum */
eps = 0.5 * 10**(1+fuzz()-digits()) /* accuracy */

/* Loop until a sufficiently accurate answer is obtained. */

do until abs(xold-xnew) < (eps*xnew)
xold = xnew /* save the old value */
xnew = 0.5 * (xold + num / xold) /* calculate the new */

end

xnew = xnew / 1 /* strip unnecessary zeros */

return xnew

Figure 26. SQRT EXEC

Reading 3

52 z/VM: REXX/VM User’s Guide

Functions Written in Assembler Language
A further improvement in performance can be obtained by writing your function in
assembler language. However, this is only likely to be worthwhile for a function
used very frequently, and by many programs.

Consult your System Support specialist or z/VM: REXX/VM Reference for more
information.

Reading 3 continues in “Arithmetic” on page 56.

Loops
�Reading 1�

This whole section, “Loops” is covered in Reading 1.

A loop is a part of a program in which the same sequence of instructions are
executed repeatedly. This is a good point to interrupt our discussion on expressions
and take a look at one or two things about loops:

v How to write a loop that keeps asking for input until a valid answer is keyed in

v How to stop a program that is in an endless loop.

The DO Instruction
To build loops, you should use the REXX instruction DO. This is described fully in a
later section, “Loops” on page 138.

/* ROOTS EXEC */
/* This program tabulates the square roots of the */
/* whole numbers in the range 1 to 100. */
/* */
/* The output is stored in the file ROOTS TABLE A. */
/* The previous version of that file, if any, is */
/* overwritten. */
"ERASE ROOTS TABLE A"
do j = 1 to 100 until rc ¬= 0

"EXECIO 1 DISKW ROOTS TABLE A (STRING",
format(j,3,0) format(sqrt(j),3,8)

end
if rc ¬= 0
then say "Unexpected return code" rc,

"from EXECIO 1 DISKW command in ROOTS EXEC"
exit
/*--*/
/* square root function */
/*--*/
SQRT: procedure
...

/* From here on, the code */
/* is the same as that shown in */
/* SQRT EXEC on page 52. */

Figure 27. ROOTS EXEC

Reading 3

Chapter 4. Expressions 53

A DO UNTIL Loop
There is one particular kind of loop that we shall need to use in our examples in the
next two sections. It is the one where, when all the instructions inside the loop have
been executed, a decision is made either to go on or to go back and repeat the
instruction again.

The diagram shows why this is called a loop. The diamond represents a decision
about which way to go.

instruction1
instruction2
instruction3

expression

True (Go on)

False (Go back)

. . .

In REXX programs, this should be written:
DO UNTIL expression

instruction1
instruction2
instruction3
... /* and so on */

END

where:

expression is any expression that evaluates to give 1 (true) or 0 (false). The value
of expression is computed every time the language processor reaches the keyword
END; if the result is 0, the language processor loops back to instruction1.
Otherwise, execution continues with the instruction following the END instruction.

For example, the program in Figure 28 will go on asking the same question until the
user answers 12.

Getting Out of Loops
This program will never finish.

/* DOZEN EXEC */
/* Just testing you */
DO UNTIL answer = 12

say "What is three times four?"
pull answer

END

Figure 28. DOZEN EXEC

Reading 1

54 z/VM: REXX/VM User’s Guide

You can recognize this situation because, when you type in another command,
CMS does not run it. If by any chance you find that you are running such a program
and your screen fills with "We are still waiting", enter the CMS immediate command
to halt interpretation:
HI

Sooner or later, you will return to CMS.

On the other hand, the program in Figure 30 is nearly impossible to get out of if you
do not know what the answer is.

You can recognize this situation because, whatever you do, the words VM READ
continue to appear in the bottom right hand corner of your screen. And typing in HI
is no good. It just gets compared with I QUIT.

If you do not know the answer, the simplest way out is to enter CP mode and
re-IPL CMS. Enter:
#cp i cms

This will cause CP to take over and issue an IPL CMS command.

Test Yourself...
1. Write a program called WHATDAY EXEC that keeps on asking what day of the

week it is. Your program should finish as soon as the user gives the right
answer. You can use the function DATE(WEEKDAY) to find out what the date
really is.

2. Write a program called TESTS EXEC that keeps on asking simple arithmetical
questions until the user has given five correct answers. You can use the
RANDOM() function to generate some numbers at random, and ask the user to
add them together.

For example:
RANDOM(1,9)

Gives a whole number in the range 1 through 9.

/* NEVER EXEC */
/* This program never ends */
DO UNTIL moon = blue

say "We are still waiting"
moon = silver

END

Figure 29. NEVER EXEC

/* ABRACADA EXEC */
/* Guess the secret password! */
DO UNTIL answer = "I QUIT"

say "What is your answer"
pull answer

END

Figure 30. ABRACADA EXEC

Reading 1

Chapter 4. Expressions 55

Answers:
1. A possible answer is:

2. A possible answer is:

That is enough about loops for now. Let us return to the subject of expressions by
discussing Arithmetic.

Reading 1 continues in “Arithmetic.”

Arithmetic
In this section:

Reading 1 immediately following, describes:
v Numbers
v Checking your input
v Addition, subtraction, multiplication
v Division
v Range of numbers allowed
v Exponential notation.

Reading 2 on page 61, describes:
v Formatting numeric output
v Specifying conventional and exponential notation.

Reading 3 on page 64, describes:

/* WHATDAY EXEC */

/* Example: to make the user say what day of the */
/* week it is today. */
do until reply = date(weekday)

say "What day of the week is it?"
say "(The first letter of your response should be in"
say "uppercase, the rest of the word should be in"
say "lowercase.)"
parse pull reply
if reply ¬= date(weekday)
then say "No, it is" date(weekday)

end
say "Correct!"

Figure 31. WHATDAY EXEC

/* TESTS EXEC */

/* Arithmetical test */
credits = 0
do until credits = 5

a = random(1,9) /* Choose a whole number */
/* between 1 and 9. Choose */
/* at random. */

b = random(1,9)
say "What is" a "+" b "?"
pull answer
if answer = a + b
then credits = credits + 1
else say a "+" b "is" a+b

end

Reading 1

56 z/VM: REXX/VM User’s Guide

v Using the ** operator to compute the nth power of a number
v Using the NUMERIC DIGITS instruction
v Using the SIGN() function
v Rounding and truncation.

Numbers
�Reading 1�

We begin this section with some examples of numbers:

12 This is a whole number or integer.

0.5 This is a decimal fraction or decimal (one half).

3.5E6 This is a floating point number (three and a half million). It uses exponential
notation. The portion that follows the E says how many places the decimal
point must be moved to the right to make it into an ordinary number.

This notation is useful when dealing with very large or very small numbers.

–5 This is a signed number (minus five).

Checking Your Input
Before attempting to do arithmetic on data entered from the keyboard, you should
check that the data is valid. You can do this using the DATATYPE() function.

In its simplest form, this function returns the word, NUM, if the argument (the
expression inside the parentheses) would be accepted by the language processor
as a number that could be used in arithmetical operations. Otherwise, it returns the
word, CHAR.

The value of datatype(49) is NUM.
The value of datatype(5.5) is NUM.
The value of datatype(5.5.5) is CHAR.
The value of datatype(5,000) is CHAR.
The value of datatype(5 4 3 2) is CHAR.

So, if you want the user to keep trying until entering a valid number you could write:

If you were interested only in whole numbers you could use the alternative form of
the DATATYPE() function. This form requires two arguments:

1. The data to be tested

2. The type of data to be tested for, for example, a whole number.

Only the first character is inspected. Thus, to test for whole numbers it would be
sufficient to write W or w. But in this book we shall write whole to remind you of
the meaning of this argument.

/* VALNUM EXEC */
/* Example requiring numeric input */
do until datatype(howmuch) = "NUM"

say "Enter a number"
pull howmuch
if datatype(howmuch) = "CHAR"
then say "That was not a number. Try again!"

end
say "The number you entered was" howmuch

Figure 32. VALNUM EXEC

Reading 1

Chapter 4. Expressions 57

This form of the function:
DATATYPE(number,"whole")

returns 1 (true) if number is a whole number, 0 (false) otherwise.

For example:
do until datatype(howmany,"whole")

...
pull howmany
...

end

And if you also wanted to restrict the input to numbers greater than zero you could
write:
do until datatype(howmany,"whole") & howmany > 0

...
pull howmany
...

end

(The & is the AND operator. See “The AND (&) Operator” on page 43.)

By the way, the DATATYPE() function can test for other types of data, as well. See
the DATATYPE function in your z/VM: REXX/VM Reference for further details.

Addition, Subtraction, Multiplication
These operations are performed in the usual way. You can use both whole numbers
and decimal fractions.

Operand Operation Example

+ (plus sign) Add Say 7 + 2 /* says "9" */
− (minus sign) Subtract Say 7 - 2 /* says "5" */
* (asterisk) Multiply Say .7 * .2 /* says ".14" */

Division
When it comes to division, you can say whether or not you want the answer
expressed as a whole number (integer). The operators you can use are:

% (percent sign) Integer divide. The result will be a whole number.
Any remainder is ignored.

For example:
Say 7 % 2 /* says "3" */

// (two slashes) Remainder after integer division.

For example:
Say 7 // 2 /* says "1" */

/ (one slash) Divide.

For example:
Say 7 / 2 /* says "3.5" */

Notice which of these operators is used here:

Reading 1

58 z/VM: REXX/VM User’s Guide

You should be careful not to divide by zero. If you do, a syntax error will result. That
is why in Figure 33 the user was not allowed to answer 0 to the question “How
many children.”

Because apples and oranges can be cut into pieces, you can use the other kind of
division operator.
children = 5; apples = 7;
say "Each child gets" apples/children "apples."
/* says "Each child gets 1.4 apples." */

Fractions are usually computed with an accuracy of nine significant digits:
children = 3; oranges = 7;
say "Each child gets" oranges/children "oranges."
/* says "Each child gets 2.33333333 oranges." */

To summarize:

v The result of a % operation is always a whole number. There may be a
remainder; to compute the remainder, write out the expression again, using the
// operator.

v The result of a / operation can be a decimal.

Range of Numbers
Like a good quality hand-held calculator, the language processor works out the
result correct to nine digits if necessary. This means nine significant digits, not
counting the zeros that come just after the decimal point in very small decimal
fractions.
say 1*2*3*4*5*6*7*8*9*10*11*12 /* says "479001600" */
say 7/30000000000 /* says: ".000000000233333333" */

The accuracy of computed results can be changed using the NUMERIC DIGITS
instruction. This instruction is described in “The NUMERIC DIGITS Instruction” on
page 65.

/* SHARE EXEC */
/* This program works out how to share zero or more */
/* sweets between one or more children, assuming that */
/* a single sweet cannot be split. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(sweets,"whole") & sweets >= 0

say "How many sweets"
pull sweets

end
do until datatype(children,"whole") & children > 0

say "How many children"
pull children

end
/*--*/
/* Compute result */
/*--*/
say "Each child will get" sweets%children "sweets",

"and there will be" sweets//children "left over."

Figure 33. SHARE EXEC

Reading 1

Chapter 4. Expressions 59

Exponential Notation
Numbers much bigger or smaller than these are difficult to read and write, because
it is easy to make a mistake counting the zeros. It is simpler to use exponential
notation. Very big numbers can be written as an ordinary (fixed point) number,
followed by a letter E, followed by a whole number. The whole number says how
many places to the right the decimal point of the fixed point number would have to
be moved to obtain the same value as an ordinary number. So:

4.5E6 is the same as 4500000 (four and a half million).
23E6 is the same as 23000000 (twenty-three million).
1E12 is the same as 1000000000000 (a million million).

The number to the right of the E is called the exponent. If the exponent is negative,
this means that the decimal point is to be shifted to the left, instead of to the right.
So:

4.5E–3 is the same as 0.0045 (four and a half thousandths).
1E–6 is the same as 0.000001 (one millionth).

You can write numbers like this in expressions, and also when entering numeric
data requested by REXX programs. The language processor will use this notation
when displaying results that are too big or too small to be expressed conveniently
as ordinary numbers or decimals. When the language processor uses this notation,
the part of the number that comes before the E (the mantissa) will usually be a
number between 1 and 9.99999999.

For example:
j = 1
do until j > 1e12

say j /* says "1" */
j = j * 11 /* "11" */

end /* "121" */
/* "1331" */
/* "14641" */
/* "161051" */
/* "1771561" */
/* "19487171" */
/* "214358881" */
/* "2.35794769E+9" */
/* "2.59374246E+10" */
/* "2.85311671E+11" */

Numbers written in exponential notation (for example, 1.5e9) are sometimes called
floating point numbers. Conversely, ordinary numbers (for example, 3.14) are
sometimes called fixed point numbers.

Test Yourself...
What is displayed on the screen when this program is run?

Reading 1

60 z/VM: REXX/VM User’s Guide

Answer:
The following is displayed:
arithops
27
23
50
12.5
12
1
2500
Ready;

The last two lines of the program require some explanation. First, x gets the value
25E2. This is the same as 25.00 with the decimal point moved two places to the
right (in other words, 2500). When x is used in the arithmetical expression, the
number 25E2 is added to zero, giving a result of 2500.

Reading 1 continues in “Groups of Instructions” on page 67.

Formatting Numeric Output
�Reading 2�

Columns of figures are easier to read if the numbers are all lined up with the units
in the same column. The FORMAT() function will help you to do this. The first
three arguments are:
1. The number to be formatted
2. The number of character positions before the decimal point
3. The number of character positions after the decimal point.

Here is an example:

/* ARITHOPS EXEC */

/* Example: arithmetical operations */
quarter = 25
deuce = 2
say quarter+deuce
say quarter-deuce
say quarter*deuce
say quarter/deuce
say quarter%deuce
say quarter//deuce
x = quarter"E"deuce
say x + 0

Reading 1

Chapter 4. Expressions 61

It displays the data formatted like this:
invoice
Quantity Unit Price Total Price Observations

101 0.73 73.73 OK
500 1995.00 997500.00 OK

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 OK

Ready;

The numbers to be formatted should always be small enough to fit into the space
you have reserved for them with FORMAT().

v A simple rule is: always specify at least 9 for the “before the decimal point”
argument. If you do, numbers with more than nine digits will be displayed in
Exponential Notation, and the extra characters required will cause fields to the
right of the number to be shifted right, thus drawing attention to the exception.

v If you do not, the person using your program may be faced with a syntax error
that is difficult to understand.

Look at item 3 in the preceding example. The quantity times the unit price (60,000
times 70,000) gives a total price of 4,200,000,000, which is too big for the nine-digit
field that was specified. The result has therefore been displayed in exponential
notation. This in turn has caused OK to be shifted right.

On the other hand, suppose we add the following:
qty.5 = 880000; unitprice.5 = 1; remark.5 = "Big deal"

and change the 4 to a 5 in the DO instruction.

Then the display reads:
invoice
Quantity Unit Price Total Price Observations

101 0.73 73.73 OK
500 1995.00 997500.00 OK

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 OK
12 +++ say format(qty.item,5,0), format(unitprice.item, 11,2),

format(qty.item * unitprice.item,12,2), " " remark.item
DMSREX475E Error 40 running INVOICE EXEC, line 12: Incorrect call to routine
Ready(20040);

This error could have been avoided:

1. In a real program, by testing the input values for a maximum number of 99999,
or

/* INVOICE EXEC */
/* Example showing how columns of figures are formatted */
qty.1 = 101; unitprice.1 = 0.73; remark.1 = OK
qty.2 = 500; unitprice.2 = 1995; remark.2 = OK
qty.3 = 60000; unitprice.3 = 70000; remark.3 = OK
qty.4 = 500; unitprice.4 = 400/12; remark.4 = OK
say "Quantity Unit Price Total Price Observations"
do item = 1 to 4

say format(qty.item,5,0),
format(unitprice.item,11,2),
format(qty.item * unitprice.item,12,2),
" " remark.item

end

Figure 34. INVOICE EXEC

Reading 2

62 z/VM: REXX/VM User’s Guide

2. By allowing space enough for at least nine digits for the integer part.
say format(qty.item,9,0),

format(unitprice.item,9,2),
format(qty.item * unitprice.item,11,2),
" " remark.item

Where the formatted data is:
invoice
Quantity Unit Price Total Price Observations

101 0.73 73.73 OK
500 1995.00 997500.00 OK

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 OK

880000 1.00 880000.00 Big deal
Ready;

Specifying Conventional (Fixed Point) Notation
To stop FORMAT() from returning floating point numbers (when results would
usually be expressed in floating point numbers) use the fourth argument of
FORMAT(). This argument specifies the number of character positions reserved for
the exponent. Exponential notation will not be used if you write:
FORMAT(number,before,after,0)

Be quite sure that the space you have allowed for before and after is sufficient.

Specifying Exponential (Floating Point) Notation
To make FORMAT() return floating point numbers (when results would usually be
expressed in fixed point numbers) use the fifth argument of FORMAT(). This
argument specifies the threshold for expressing the result in exponential notation.
Exponential notation will be used if you write:
FORMAT(number,before,after,,0)

For other uses of the FORMAT() function, see the z/VM: REXX/VM Reference.

A Special Case
When a floating point number has an absolute value between 1 and 9.99999999
(that is, when the exponent is zero) the characters E+0 are always omitted even
when floating point has been specified.

Test Yourself...
1. Write an exec called REFORMAT that expresses numbers entered by the user

in both fixed point and exponential notation.

2. Test your program with the numbers:
123456789
0.0000000000012345
999999999999e-6
1.2e10
1.2
1.2e+0

Or, use any other numbers you can think of.

Answers:
1. A possible answer would be:

Reading 2

Chapter 4. Expressions 63

2. The following table lists the results you should get when using the test numbers
with the REFORMAT EXEC.

Table 1. Results from the REFORMAT EXEC

Number entered: Fixed point equivalent: Exponential equivalent:

123456789 123456789 1.23456789E+8

0.0000000000012345 0.0000000000012345 1.2345E-12

999999999999e-6 1000000.00 1.00000000E+6

1.2e10 12000000000 1.2E+10

1.2 1.2 1.2

1.2e+0 1.2 1.2

Reading 2 continues in “Text” on page 67.

Exponentiation
�Reading 3�

The operator ** means “raised to the whole-number power of”. So:
2**1 = 2 = 2 (2 to the power of 1)
2**2 = 2*2 = 4 (2 to the power of 2, or 2 squared)
2**3 = 2*2*2 = 8 (2 to the power of 3, or 2 cubed)
2**4 = 2*2*2*2 = 16 (2 to the power of 4).

And, as in ordinary algebra:
2**0 = 1
2**–1 = 1/(2**1) = 0.5 (2 to the power of minus 1)
2**–2 = 1/(2**2) = 0.25 (2 to the power of minus 2).

The number on the right of the ** must be a whole number.

In the order of precedence, the exponentiation (**) operator comes below the prefix
operators and above the multiply and divide operators.

For example:
say -5**2 /* Says "25". Same as (-5)**2 */
say 10**3/2**2 /* Says "250". Same as (10**3)/(2**2) */

/* REFORMAT EXEC */

/* Example: to change the format of a number */
do forever

say "Enter a number"
pull answer
if ¬ datatype(answer,number) then exit
say "Fixed point equivalent:" format(answer,,,0)
say "Exponential equivalent:" format(answer,,,,0)

end

Reading 2

64 z/VM: REXX/VM User’s Guide

The NUMERIC DIGITS Instruction
If you want to avoid using exponential notation, or simply want to increase the
accuracy of your calculations, you can use the NUMERIC DIGITS instruction to
change the number of significant digits. (The default setting for NUMERIC DIGITS
is 9.)

For example:

The sample program results in the display of:
accurate
The largest signed number that can be held
in a general register is 2147483647 exactly.
1/7 = 0.142857142857142857142857142857142857142857142857
Ready;

To check the current setting of the NUMERIC DIGITS instruction use the DIGITS()
function. For example, if no setting was specified for NUMERIC DIGITS:
DIGITS()

would return 9 because the default setting for NUMERIC DIGITS is nine significant
digits.

The SIGN() Function
You can determine whether a number is positive, negative, or zero by using the
SIGN() function.

First the number inside the parentheses is rounded according to the current
NUMERIC DIGITS setting. If this number is <0, =0, or >0, the value returned by the
SIGN() function is -1, 0, 1, respectively.

For example:
say sign(1/7) /* says "1" */

Rounding and Truncation
Each arithmetical operation is carried out in such a way that no errors are
introduced, except during final rounding.

For example:
numeric digits 3
say 100.3 + 100.3 /* gives 200.6, which is rounded */

/* to "201" */

For a complete description of rounding, see the z/VM: REXX/VM Reference.

/* ACCURATE EXEC */
/* examples of numbers with unusually high precision */
numeric digits 10
say "The largest signed number that can be held"
say "in a general register is" 2**31 - 1 "exactly."
say
numeric digits 48
say "1/7 =" 1/7

Figure 35. ACCURATE EXEC

Reading 3

Chapter 4. Expressions 65

When your program performs a series of arithmetical operations, you may
inadvertently introduce additional errors. Look at the fourth item in INVOICE EXEC
in Figure 34 on page 62. The customer appears to have been overcharged by
$1.67! The price was $400 a dozen. FORMAT() has rounded this to 33.33 each.
But Total Price was not rounded until after it had been multiplied by 500.

For rounding numbers, use FORMAT() at the point in your calculations where you
want rounding to occur. For rounding down, use TRUNC().

When run, the following is displayed:
ttrunc
Quantity Unit price Total price Remarks
--

500 33.33 16665.00 Rounding conventionally
500 33.33 16665.00 Rounding down
500 16.67 8335.00 Rounding conventionally
500 16.66 8330.00 Rounding down

Ready;

Test Yourself...
1. In this program:

a. What is displayed on the screen?
b. Are the parentheses in this expression really necessary?

2. What value will be computed for the expression:
say 9 ** (1/2)

Answers:
1. The answers are:

a. True

/* TTRUNC EXEC */
/* An example of rounding. */
qty.1 = 500; unitprice.1 = 400/12
qty.2 = 500; unitprice.2 = 200/12
say
say "Quantity Unit price Total price Remarks"
say copies("-",58)
do item = 1 to 2

unitprice = FORMAT(unitprice.item,9,2)
say format(qty.item,6,0),

format(unitprice,7,2),
format(qty.item * unitprice,10,2),
" Rounding conventionally"

unitprice = TRUNC(unitprice.item,2)
say format(qty.item,6,0),

format(unitprice,7,2),
format(qty.item * unitprice,10,2),
" Rounding down"

end

Figure 36. TTRUNC EXEC

/* EXPONENT EXEC */

/* Example of a negative exponent */
if 2 ** -3 = 1/(2**3) then say "True"
else say "False"

Reading 3

66 z/VM: REXX/VM User’s Guide

b. No. The ** operator has a higher priority than the / operator, so the
language processor would evaluate the expression in the same way if the
parentheses were removed.

2. Syntax error! The ** operator must be followed by a whole number (or an
expression which, when evaluated, gives a whole number).

In mathematics, x ** (1/2) means “the square root of x”. There is an example
of a SQRT() function in “A Square Root Function” on page 51.

Reading 3 continues in “Text.”

Groups of Instructions
�Reading 1�

This whole section, “Groups of Instructions”, is covered in Reading 1.

We are interrupting our discussion of expressions to explain how instructions can
be grouped together.

Instructions can be grouped together using:
DO

instruction1
instruction2
instruction3
...

END

If the keyword DO is in a clause by itself, the list of instructions is executed one time
(no loop is implied).

The DO instruction and the END keyword make the whole group into a single
instruction, which can be used after a THEN or ELSE keyword.
IF sun = shining
THEN

DO
say "Get up!"
say "Get out!"
say "Meet the sun half way!"

END

In this example, if sun = shining, all three SAY instructions will be executed. But
if sun ¬= shining, none of them will.

We shall be using DO in this way in the sections that follow.

Reading 1 continues in “Text.”

Text
In this section:

Reading 1 immediately following, describes:

v How to concatenate

v How to use the SUBSTR(), LENGTH(), COPIES(),
LEFT(), and RIGHT() built-in functions for string
manipulation.

Reading 3

Chapter 4. Expressions 67

Reading 2 on page 71, describes:

v How to use a subroutine to simplify tabulation

v How to search for a string of characters using the POS() and
WORDPOS() functions.

v How to display lines from your own program using
SOURCELINE().

Reading 3 on page 76, describes:

v How to use the OVERLAY(), WORD(), and WORDS()
functions.

Concatenation
�Reading 1�

To concatenate two terms means to join them together to make a string. The
concatenate operators are:

|| (two vertical bars)
concatenate with no blanks in between

(blank)
concatenate with one blank in between

abuttal
concatenate with no blank in between (as long as the two terms can be
recognized separately).

Here are some examples:
say "slow"||"coach" /* says "slowcoach" */
say "slow" "coach" /* says "slow coach" */
/* And */
adjective = "slow"
say adjective"coach" /* says "slowcoach", This is */

/* an example of an abuttal. */
say adjective "coach" /* says "slow coach" */
say "("adjective")" /* says "(slow)" */

The SUBSTR() Function
The value of any REXX variable is a string of characters. To select a part of a
string, use the SUBSTR() function. SUBSTR is an abbreviation for substring. The
first three arguments are:

1. The string from which a part will be taken

2. The position of the first character that is to appear in the result (Characters in a
string are numbered 1,2,3, ...)

3. The length of the result.

(For a complete definition, see the z/VM: REXX/VM Reference.)

Here is a simple example:
S = "reveal"
say substr(S,2,3) /* says "eve" */
say substr(S,3,4) /* says "veal" */

The LENGTH() Function
To find out the length of a REXX variable, use the LENGTH() function.

Reading 1

68 z/VM: REXX/VM User’s Guide

S = "reveal"
say length(S) /* says "6" */

Here is an example that uses these two functions:
say "Enter a file name"
pull fn . /* The period ensures that */

/* FN is assigned only one */
/* word. */

if length(fn) > 8
then

do /* A group. See page 67. */
fn = substr(fn,1,8)
say "The file name you entered was too long. ",

fn "will be used."
end

The COPIES() Function
To produce a number of copies of a string, use the COPIES() function. The
arguments are:

1. The string to be copied

2. The number of copies required.

For example:
say COPIES("Ha ",3)! /* says "Ha Ha Ha !" */

The LEFT() Function
To obtain a string that is always length characters long, with string at the left hand
end of it, use the LEFT() function.
LEFT(string,length)

If string is too short, the result will be padded with blanks; if string is too long, the
extra characters will be truncated.

For example:
say "|"left("Long",6)"|" /* says "|Long |" */

say "|"left("Longer",6)"|" /* says "|Longer|" */

say "|"left("Longest",6)"|" /* says "|Longes|" */

The RIGHT() Function
The RIGHT() function works the same as the LEFT() function, except the
returned string is padded or truncated on the left.

Arranging Your Output in Columns
You can use the LEFT() function to arrange your output in columns:

Reading 1

Chapter 4. Expressions 69

And you can vary the tab settings by changing the values of C1 and C2. The output
looks like this:
table1
First Name Last Name Occupation
--
Bill Brewer Innkeeper
Jan Stewer Cook
Peter Gurney Farmer
Peter Davey Laborer
Daniel Whiddon Gamekeeper
Harry Hawke Exciseman
Tom Cobley Sailor (retired)
Ready;

Test Yourself...
Given that C = “Continent”, what is the value of:
1. C “of America”
2. C || “al”
3. C“al”
4. LENGTH(“Continent”)
5. LENGTH(C)
6. LENGTH(“C”)
7. Substr(c,1,4)substr(c,7,3)
8. Substr(c,1,2)substr(c,5,2)
9. LEFT(“Q”,8)“QUERY”

10. LEFT(“COPY”,8)“COPYFILE”

Answers:
1. Continent of America
2. Continental
3. Continental
4. 9
5. 9
6. 1
7. Content
8. Coin

│---+----+----+----│
(This scale can help you check the number of blanks in the following
answers.)

9. Q QUERY
10. COPY COPYFILE

/* TABLE1 EXEC */
/* Example: tabulated output */
c1 = 14 /* Width of column 1 */
c2 = 20 /* Width of column 2 */
ruler = c1 + c2 + 16 /* Width of ruled line */
say left("First Name",c1)Left("Last Name",c2)"Occupation"
say copies("-",ruler)
say left("Bill",c1)Left("Brewer",c2)"Innkeeper"
say left("Jan",c1)Left("Stewer",c2)"Cook"
say left("Peter",c1)Left("Gurney",c2)"Farmer"
say left("Peter",c1)Left("Davey",c2)"Laborer"
say left("Daniel",c1)Left("Whiddon",c2)"Gamekeeper"
say left("Harry",c1)Left("Hawke",c2)"Exciseman"
say left("Tom",c1)Left("Cobley",c2)"Sailor (retired)"

Figure 37. TABLE1 EXEC

Reading 1

70 z/VM: REXX/VM User’s Guide

Reading 1 continues in “Comparisons” on page 79.

Using a Subroutine to Simplify Tabulation
�Reading 2�

To make your main program easier to read, leave formatting of output to a
subroutine. For example, the exec in Figure 38 shows how a subroutine can be
used several times in order to create a table.

For example:

The output will be the same as TABLE1 on page 69.

For the CALL instructions in Figure 38, the arguments are separated by commas. In
general, each argument could be an expression.

The expression, arg(1), refers to the first argument passed to the called subroutine.
arg(2) refers to the second argument passed to the called subroutine, and arg(3)
refers to the third argument passed to the called subroutine. For example, in the
TABLE2 EXEC, the first time TABOUT is called, arg(1) is First Name, arg(2) is Last
Name, and arg(3) is Occupation.

For example:

/* TABLE2 EXEC */
/* Example: a simpler way to obtain tabulated output */
call tabout "First Name", "Last Name", "Occupation"
say copies("-",50)
call tabout "Bill", "Brewer", "Innkeeper"
call tabout "Jan", "Stewer", "Cook"
call tabout "Peter", "Gurney", "Farmer"
call tabout "Peter", "Davey", "Laborer"
call tabout "Daniel", "Whiddon", "Gamekeeper"
call tabout "Harry", "Hawke", "Exciseman"
call tabout "Tom", "Cobley", "Sailor (retired)"
exit
/*--*/
/* Subroutine to tabulate the output */
/* ================================= */
/* Input format: CALL TABOUT arg1,arg2,arg3 */
/* (number of arguments is not checked) */
/* */
/* Output to screen: arg1 in Column 1 */
/* arg2 in Column 15 */
/* arg3 in Column 35 */
/*--*/
TABOUT:
say left(arg(1),14),
|| left(arg(2),20),
|| arg(3)
return

Figure 38. TABLE2 EXEC

Reading 2

Chapter 4. Expressions 71

When run, the following is displayed:
table3
First Name Last Name Occupation
--
Tom (Uncle) Cobley Sailor (retired)
Ready;

The POS() Function
To find the position of a string in another string, use the POS() function. The first
two arguments are:
1. The needle to be found
2. The haystack to be searched.

For a complete definition, see the z/VM: REXX/VM Reference.

Here is a simple example:
S = "reveal"
say pos("eve",S) /* says "2" */
say pos("revel",S) /* says "0" /* not found */ */

Other useful functions of this type are LASTPOS() and COMPARE().

Example
The next example uses some of the functions that you have just been reading
about.

/* TABLE3 EXEC */
/* Example: arguments can be expressions */
call tabout "First Name", "Last Name", "Occupation"
say copies("-",50)
r = "(retired)"
firstname = "Tom"
nickname = "Uncle"
lastname = "Cobley"
call tabout firstname "("nickname")", lastname, "Sailor" r
exit
/*--*/
/* Subroutine to tabulate the output */
... (See Note 1)

Notes:

1. Same as TABLE2 EXEC in Figure 38.

Figure 39. TABLE3 EXEC

Reading 2

72 z/VM: REXX/VM User’s Guide

Words
In REXX, a word is defined as a string of characters delimited by blanks. To
process words, rather than characters, use any of the following REXX functions:

DELWORD
FIND
SUBWORD
WORD

/* VALIDFN EXEC */
/* VALIDATE FILE NAME */
/* This program checks that names conform to a set of */
/* defined standards. The names must have the form: */
/* */
/* namddiii */
/* */
/* where "nam" stands for one of the components (INP, */
/* PRO, or OUT); "dd" are two decimal digits; and */
/* "iii" are the author's initials (from one to three */
/* letters). For example, the fifth module that */
/* Joe Bloggs writes for the INPut component would be */
/* */
/* INP05JB */
/* */
do until good /* assume the name is good */

good = 1
Say "Enter file name"
pull fn .
if length(fn) > 8 then do /* length */

say "File name must not be more",
"than 8 characters long"

good = 0 /* bad file name */
end
componentname = left(fn,3) /* component */
select
when componentname = "INP" then nop /* valid names */
when componentname = "PRO" then nop
when componentname = "OUT" then nop
otherwise

say "First three characters must be",
"a valid component name"

good = 0 /* bad file name */
end

/*continued ...*/
serial = substr(fn,4,2)
if datatype(serial,whole) & pos(".",serial) = 0
then nop
else do

say "Fourth and fifth characters must be numeric"
good = 0 /* bad file name */

end
author = substr(fn,6) /* author */
if ¬ datatype(author,upper)
then do

say "Sixth and remaining characters",
"must be alphabetic"

good = 0 /* bad file name */
end
if good = 0 then say "Try again"

end

Figure 40. VALIDFN EXEC

Reading 2

Chapter 4. Expressions 73

WORDINDEX
WORDLENGTH
WORDPOS
WORDS.

The following description highlights the WORDPOS function; all functions are
described fully in the z/VM: REXX/VM Reference.

(Also see the PULL, ARG and PARSE instructions, on page The PULL Instruction
on page 90 through 96).

The WORDPOS() Function
To find a phrase (of one or more words) in a string, use the WORDPOS() function.

�� WORDPOS(phrase,string
,start

) ��

The arguments are:

1. The phrase to be found.

2. The string be searched.

3. The start point of the search (must be a positive number). The default is the first
word in the string.

The language processor searches string for the sequence of word(s), phrase. The
result is the word-number of the first word in string that matches the first word in
phrase. But, if phrase is not found, zero is returned.

By default the search starts at the first word in string. By specifying start you can
begin the search for phrase on any word in string.

For example:

Providing Help
You may have noticed that CMS commands and REXX instructions are provided
with a HELP command, so that if you forget how to use them you can always get a
definition displayed on the screen.

If you are writing programs that other people will use, it will help your users if you
do the same. You can either write a separate HELP file for your program or, more
informally, you can provide information from within your program file.

Here is a program that provides its own HELP, using the SOURCELINE() function
to simplify the job of displaying whole lines. SOURCELINE(n) returns the nth line of

/* REVERE EXEC */
/* "The British are coming!" */
text = "Listen, my children, and you shall hear",

"Of the midnight ride of Paul Revere"
name = "Paul Revere"
say WORDPOS(name,text) /* says "13" */
say WORDPOS("my children",text) /* says "0", because the */

/* Word in TEXT is */
/* "children," */
/* (Notice the comma) */

Figure 41. REVERE EXEC

Reading 2

74 z/VM: REXX/VM User’s Guide

the source file. If n is omitted, SOURCELINE() returns the line number of the final
line in the source file.

Note: Notice that the comment delimiters must be on a separate line in order for
the exec to work properly.

Test Yourself...
Write a subroutine to display data on the screen in the following format:

v The first argument occupies columns 1 to 20. The text is left justified.

v The second argument is an amount of dollars and cents (or pounds and pence,
or francs and centimes, or marks and pfennigs) with the units position of the
cents in column 34.

v The third argument occupies columns 37 to 80.

v As a further refinement, extend your program so that, when the third argument is
too long to fit onto one line, it can be extended into columns 37 to 80 of as many
lines as necessary.

Answers:
Here is the answer to the fourth item, with some test cases.

/* MYPROG EXEC */
/*
This program processes the input file to give ...
... ...
Correct format is:

MYPROG
Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
say "Enter file ID of file to be processed"
pull fn ft fm
if fn = ? | fn = "" | ft = ""
then do

/* Display lines until comment-end delimiter alone */
line = 2
do while sourceline(line) ¬= "*/"

say sourceline(line)
line = line + 1

end
exit

end
/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"

Figure 42. MYPROG EXEC

Reading 2

Chapter 4. Expressions 75

Note: Notice the double commas in two of the CALL statements in the 4MAT
EXEC. The first comma indicates that the clause is extended to the next line.
The second comma indicates the end of the argument.

When this program is run, this is what is displayed:
4mat
whole number 12.00 An easy case
expression 333.33 Rounded up
abcdefghijklmnopqrst12345678900.00 Precision of this number is that specified b

y NUMERIC DIGITS
Small number 0.00 After rounding, this number is

less than .005
Ready;

Reading 2 continues in “Comparisons” on page 79.

The OVERLAY() Function
�Reading 3�

To overlay one string onto another string, use:

�� OVERLAY(new,target,position,length) ��

The arguments are:
v The string to be overlaid

/* 4MAT EXEC */

/* Example: a subroutine for formatting text, and a */
/* main routine for testing it. */
call formatter "whole number", 12, "An easy case"
call formatter "expression",2000/6, "Rounded up"
call formatter "abcdefghijklmnopqrstuvwxyz",,

12345678888,,
"Precision of this number is that",
"specified by NUMERIC DIGITS"

call formatter "Small number", 1/201,,
"After rounding, this number is",
" less than .005"

exit
/*--*/
/* Subroutine to format data and display it. */
/* (For specification, see page 75.) */
/*--*/
FORMATTER:
len = 80 - 37 + 1 /* length of */

/* remark field */
parse arg name, value, remark
do j = 1 while length(remark) > len /* slice REMARK */

remark.j = substr(remark,1,len)
remark = substr(remark,len+1)

end
remark.j = remark /* last slice */
say left(name,20), /* say first line */
|| format(value,11,2,0),
|| " "remark.1

/* say others */
do line = 2 to j

say copies(" ",36)||remark.line
end
return

Reading 2

76 z/VM: REXX/VM User’s Guide

v The target onto which it is to be overlaid
v The position in the target where overlaying is to start
v The number of characters to be overlaid.

For example:
say overlay("abc","123456",3,2) /* says "12ab56" */

(For a complete definition, see the z/VM: REXX/VM Reference.)

Here is a useful example.

This is not the fastest way of sorting things, but it is one of the simplest.

The WORDS() and WORD() Functions
A word is a string of characters, delimited by blanks. To obtain the number of words
in a string, use the WORDS() function.

For example:
necessity = "the mother of invention."
say words(necessity) /* says "4" */

To obtain a particular word from a string, use the WORD() function. The
arguments are:

v The string

v The number of the word to be extracted from it.

For example:
necessity = "the mother of invention."
say word(necessity,2) /* says "mother" */

This next example demonstrates how the WORD and WORDS functions can be
used to search for a word (in this case, a file type) that matches one of a given list

/* ORDCHARS EXEC */
/* This program will help you understand how */
/* comparisons are made. The characters typed in by */
/* the user will be sorted into ascending order. */
say "Please type in all the characters you would",

"like to have sorted."
parse pull S /* Do not translate */

/* to uppercase. */
do until swap = 0
swap = 0

do p = 1 to (length(S) - 1)
c1 = substr(S,p,1)
c2 = substr(S,p+1,1)
if c1 > c2 then do /* If out of order, */

S = overlay(c2||c1,S,p,2) /* swap them. */
swap = 1 /* Remember the swap */

end
end

end
say
say "Here are the same characters,",

"arranged in ascending order:"
say
say S

Figure 43. ORDCHARS EXEC

Reading 3

Chapter 4. Expressions 77

of words.

/* XE EXEC */
/* This exec helps you select files to be edited by */
/* the XEDIT editor. Use the command */
/* */
/* XE filename [filetype [filemode]] [(options] */
/* */
/* You need not specify a file type. If you do not, */
/* XE will search for a file in the following order: */
/* */
/* filename SCRIPT on any filemode */
/* filename EXEC on any filemode */
/* filename PLIOPT on any filemode */
/* filename DOC on any filemode */
/* filename LISTING on any filemode */
/* */
/* If none of these can be found, it will select */
/* */
/* filename SCRIPT A */
/* */
/* However, if you do specify a file type, XEDIT will */
/* use the file type that you have specified on the */
/* command line. */
/* */
/* When the file has been chosen, XEDIT will be called */
/* and any options that you have specified on the */
/* XE command line will be passed to XEDIT */

/* continued ... */

Figure 44. XE EXEC (Part 1 of 2)

Reading 3

78 z/VM: REXX/VM User’s Guide

Reading 3 continues in “Comparisons.”

Comparisons
In this section:

Reading 1 immediately following, describes:
v Comparing numbers
v Comparing character strings.

Reading 2 on page 81, describes:
v Finding the first character that does not match
v Comparing data without regard to case
v Recognizing abbreviations.

Reading 3 on page 82, describes:
v Exact comparisons
v Fuzzy arithmetical comparisons.

types = "SCRIPT EXEC PLIOPT DOC LISTING"
/*--*/
/* check arguments */
/*--*/
arg filename filetype filemode "(" options

/* Coding note: */
/* See 56. */

if filename = "" | filename = "?" /* Help needed */
then do

do line = 1 while substr(sourceline(line),1,2) = "/*"
say sourceline(line)

end
exit

end
/*--*/
/* compute file type */
/*--*/
if filetype = "" then do

do p = 1 to words(types)
filetype = word(types,p)
"SET CMSTYPE HT"
"STATE" filename filetype /* does file exist? */
rcs = rc
"SET CMSTYPE RT"
select

when rcs = 28 then nop /* no */
when rcs = 0 then leave p /* yes */

/* Coding note: */
/* See page 147. */

otherwise
say "Unexpected return code" rcs,

"from STATE command in XE EXEC"
exit rcs

end /* select */
end p
if rcs = 28 /* not found yet */
then filetype = SCRIPT

end
/*--*/
/* call xedit */
/*--*/
"XEDIT" filename filetype filemode "("options
exit rc

Figure 44. XE EXEC (Part 2 of 2)

Reading 1

Chapter 4. Expressions 79

General
�Reading 1�

Comparisons are performed using the operators:
> Greater than
= Equal to
< Less than.

These characters can also be combined with each other and with the not character
(¬). (For full details, see the z/VM: REXX/VM Reference.)

Numbers
If both the terms being compared are numbers, comparison is numeric, rather than
character by character.

The value of 5 > 3 is 1 /* true */
The value of 2.0 = 002 is 1 /* true */
The value of 3E2 < 299 is 0 /* false */

Characters
If either of the terms is not a number, leading and trailing blanks are ignored; the
shorter string is padded on the right with blanks; and then the strings are compared
from left to right, character by character. If the strings are not equal, the first pair of
characters that do not match determine the result.

For example, if “ Chalk” is compared with “Cheese ”
A character is less than another character if it comes earlier in the sequence:

(lowest)
blank
special characters
a ... z
A ... Z
0 ... 9
(highest).

There may be exceptions to this for some of the special characters, depending on
the features of the keyboard you are using. You can use the program ORDCHARS
EXEC in Figure 43 on page 77 to discover the sequence of characters for your
keyboard.

Test Yourself...
What is the value of each of the following expressions?
1. “3” > “five”

pad

┌─┬─┬─┬─┬─┬─┬─┬─┐
│ │ │C│h│a│l│k│ │
└─┴─┴─┴─┴─┴─┴─┴─┘

│ │ │ ┌─────────────────────────┐
= = * ────────────�│a � e so Chalk � Cheese│
│ │ │ └─────────────────────────┘
┌─┬─┬─┬─┬─┬─┬─┐
│C│h│e│e│s│e│ │
└─┴─┴─┴─┴─┴─┴─┘

Figure 45. Comparing Character by Character

Reading 1

80 z/VM: REXX/VM User’s Guide

2. “Kilogram” > “kilogram”
3. “a” > “#”
4. “q” > “?”
5. “9a” > “9”
6. “?” > “ ”

Answers:
All are “1” (true).

Reading 1 continues in “Translation” on page 83.

The COMPARE() Function
�Reading 2�

To compare two strings and find the position of the first character in the first string
that does not match the second string, use the COMPARE() function.

�� COMPARE(string1,string2) ��

For example:
/* Given that */
a = "Berry"; b = "Beryl"; c = " Bert"; d = "BEST"

The value of compare(a,b) is 4.
The value of compare(a,c) is 1.
The value of compare(a,d) is 2.

In that last example, notice that e is not the same as E. When you would like your
comparisons to be independent of case, translate everything to uppercase first. Of
course, if you obtained your data using ARG or PULL, this will have been done for
you. If not, you can use the UPPER instruction to change one or more variables to
uppercase.
/* Given that */
a = "Berry"; b = "Beryl"; c = " Bert"; d = "BEST"
UPPER a b c d

The value of compare(a,d) is 3.

The ABBREV() Function
In a friendly environment, the user might expect to be allowed to use abbreviations,
just as you can with CMS commands. To specify what abbreviations you will accept,
use the ABBREV() function.

�� ABBREV(information,info
,length

) ��

The arguments are:

1. The keyword in full.

2. The user’s answer.

3. The minimum number of characters in the user’s answer. If you leave this
argument out, the minimum number is assumed to be the same as the actual
length of the user’s answer. A null answer is also accepted.

The result is 1 (true) if info (the user’s answer) is at least length characters long
and all the characters of info match the corresponding characters of information
(the keyword in full).

Reading 1

Chapter 4. Expressions 81

For example,

Test Yourself...
Given that:

Q2 = “COPY”
Q3 = “PRT”

What is the value of:
1. COMPARE(SUBSTR(Q2,3),Q3)
2. ABBREV(“COPYFILE”,Q2,4)
3. ABBREV(“PRINT”,Q3,2).

Answers:
1. 2
2. 1
3. 0 (“PRT” is not equal to the first 3 letters of “PRINT”.)

Reading 2 continues in “Translation” on page 83.

Exact Comparisons
�Reading 3�

Strict comparison operators carry out simple character-by-character comparisons,
with no padding of either of the strings. They do not try to perform numeric
comparisons because they test for an exact match between the two strings.

To find out whether two strings are exactly equal (that is, identical) use the ==
operator.

Given that:
x = "2"; y = "+2"
The value of x = y is 1 /* true */
The value of x \= y, x ¬= y or x /= y is 0 /* false */
The value of x == y is 0 /* false */
The value of x \== y, x ¬== y or x /== y is 1 /* true */

/* YEP EXEC */
/* Example: accepting abbreviations */
do until yes ¬= "YES" /* until YES is set */

say " ... answer Yes or No"
pull answer
select

when abbrev("YES",answer,1) /* accepts "YES", */
/* "YE" or "Y" */

then yes = 1
when abbrev("NO",answer) /* accepts "NO", "N" */

/* or '' */
then yes = 0
otherwise say "Try again!"

end /* select */
end
if yes then say "I take that to mean YES"
else say "I take that to mean NO"

Figure 46. YEP EXEC

Reading 2

82 z/VM: REXX/VM User’s Guide

You can also find out whether two strings are exactly greater than or exactly less
than using the >> and << operators. (Remember, a character is less than another
character if it comes earlier in the sequence. Refer to page 80.)

For example:
The value of "cookies" >> "carrots" is 1 /* true */
The value of "$10" >> "nine" is 0 /* false */
The value of "steak" << "fish" is 0 /* false */
The value of " steak" << "steak" is 1 /* true */

In the last example, " steak" is strictly less than "steak" since the blank is lower in
the sequence of characters.

The strict comparison operators would be especially useful if you were interested in
leading and trailing blanks, nonsignificant zeros and so on.

For more information on exact comparison operators, see the z/VM: REXX/VM
Reference.

Fuzzy Arithmetical Comparisons
There are times when an accurate comparison is inconvenient, for instance:

To make comparisons less accurate than ordinary REXX arithmetic, use the
NUMERIC FUZZ instruction. (For full details, see the z/VM: REXX/VM Reference.)

For example:

To check the current setting of the NUMERIC FUZZ instruction use the FUZZ ()
function. For example:
FUZZ()

will return 0 by default. This means that 0 digits will be ignored during a comparison
operation.

Reading 3 continues in “Translation.”

Translation
In z/VM, each character or byte contains 8 bits. There are two possible values for
each bit, and so there are 2**8 or 256 possible characters in the character set.

/* NOFUZZ EXEC */
/* Example: no approximation here */
say 1 + 1/3 /* says "1.33333333" */
say 1 + 1/3 + 1/3 + 1/3 /* says "1.99999999" */
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "0" (false) */

Figure 47. NOFUZZ EXEC

/* FUZZ EXEC */
/* Example: allowing approximation */
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "0" (false) */
numeric fuzz 1
say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "1" (true) */

Figure 48. FUZZ EXEC

Reading 3

Chapter 4. Expressions 83

If you need to translate from one character set to another, or if you are dealing with
output from programs that work in binary or hexadecimal, you should study this
section.

In this section:

Reading 1 skips this section.

v Continue Reading 1 in Chapter 5, “Conversations,” on page
89.

Reading 2 on page 84, describes:

v Conversion between Character, Hexadecimal and Decimal.
Reading 3 on page 87, describes:

v Translation from one character set to another

v The VERIFY() function.

Hexadecimal
�Reading 2�

In z/VM, each character occupies 8 bits. Each bit can have one of two values, 0 or
1. For example, the character + has the value:

0100 1110 (binary)

But, because binary is difficult for humans to read, we might write it as a pair of
hexadecimal digits. There are 16 possible hex digits. They are:

0 1 2 3 4 5 6 7 8 9 A B C D E F

So the hexadecimal equivalent of + is 4E.

Finally, we could also write the value of the character + as its decimal equivalent,
which is 78.

The language processor will accept strings expressed in either character or
hexadecimal form. Hexadecimal numbers are usually expressed with the X in front
of the number like X'18'. But REXX only accepts hexadecimal numbers with the X
after the number. So, to indicate that a string is expressed in hex, write the letter X
after the closing quotation mark like '18'X.

The value of + is the same as the value of '4E'X.

Conversion
To convert from one form to another, you can use various built-in functions.

2 means translate to

C means characters

X means hexadecimal

D means decimal
The value of C2X(+) is 4E
The value of X2C(4E) is +
The value of C2D(+) is 78
The value of D2C(78) is +
The value of D2X(78) is 4E
The value of X2D(4E) is 78

All these functions will accept strings more than 1-byte long.

Reading 1

84 z/VM: REXX/VM User’s Guide

To understand the conversion functions, let’s look at the inputs to and the outputs
from the functions in hexadecimal. The following chart shows example hexadecimal
input, the conversion function performed, and the resultant hexadecimal output. Also
shown is another way to remember what the function does.

Table 2. Inputs and Outputs of Hexadecimal Functions
Input Function Result What the function does

0F C2D F1F5 binary in, EBCDIC out (represents a decimal value)
0F C2X F0C6 binary in, EBCDIC out (represents a hexadecimal value)
F1F5 D2C 0F EBCDIC representing decimal in, binary out
F1F5 D2X C6 EBCDIC representing decimal in, EBCDIC representing

hexadecimal out
F1C6 X2C 1F EBCDIC representing hexadecimal in, binary out
F1C6 X2D F3F1 EBCDIC representing hexadecimal in, EBCDIC representing

decimal out

The inputs to C2D and C2X can be any hexadecimal value. Hexadecimal input is
typically referred to as binary or character input. The hexadecimal value does not
represent an EBCDIC string. Usually the input to C2D or C2X is generated by
another program or a function, such as the REXX DIAG function, that returns a
binary value.

You would use C2X or C2D to convert this binary value into a form that could be
displayed on an EBCDIC terminal, or that could be used in other REXX instructions.

In the first function, C2D, the input is hexadecimal '0F'. C2D tells REXX to convert
the input into a decimal value and then to convert that decimal value into its
EBCDIC representation. Hexadecimal '0F' has a decimal value of 15. The EBCDIC
representation of 15 is 'F1F5'. If you were to display hexadecimal 'F1F5' on an
EBCDIC terminal, what you would see is the character string 15.

Try executing:
say c2d('0F'x)

You should see a 15 displayed on your terminal. Notice that we use the notation
'0F'x for input. This is because there is not a key on most EBCDIC terminals that
causes a hexadecimal '0F' to be generated.

For the C2X function, the input is, again, hexadecimal '0F'. C2X tells REXX to
convert the hexadecimal value into an EBCDIC form. The hexadecimal value is '0F'.
The EBCDIC representation of that value is 'F0C6'. If you were to display
hexadecimal 'F0C6' on an EBCDIC terminal, you would see the character string 0F.
Try executing:
say c2x('0F'x)

You should see 0F on your terminal.

The input to the next two functions, D2C and D2X must be the EBCDIC
representation of a decimal value. The output of D2C is binary, and hence may be
nondisplayable, while the output of D2X is an EBCDIC representation of a
hexadecimal value.

In the preceding chart, the input to D2C is hexadecimal 'F1F5'. By definition, the
input to the D2C function is an EBCDIC string that represents some decimal value.
D2C tells REXX to take the decimal value represented by the input and convert it to

Reading 2

Chapter 4. Expressions 85

a hexadecimal value. The EBCDIC string 'F1F5' represents a decimal value of 15.
Hexadecimal notation for decimal 15 is '0F'. Try executing both of these
instructions:
say d2c('f1f5'x)
say d2c(15)

They both mean the same thing. In the first instruction, we supply the hexadecimal
string as input. In the second, we type the characters, which are internally
represented as hexadecimal 'F1F5'.

Both instructions attempt to display hexadecimal '0F' on your terminal. On most
EBCDIC terminals, '0F' does not mean anything. You will either see a blank or, on
some models, you might see an unusual character.

In the chart on page 85, hexadecimal 'F1F5' is also the input to D2X. Again, by
definition, the input to D2X must be an EBCDIC string that represents some
decimal value. D2X tells REXX to convert the EBCDIC representation of the
decimal value into the EBCDIC representation of its equivalent hexadecimal value.
EBCDIC 'F1F5' represents a decimal value of 15, which is the hexadecimal value F.
The EBCDIC representation of the character F is 'C6'. Try:
say d2x('f1f5'x)
say d2x(15)

Again, the instructions mean the same thing. Both attempt to display hexadecimal
'C6' on your terminal. In EBCDIC, 'C6' represents the character F, which is what
you will see on your terminal.

The last two functions, X2C and X2D, accept as input EBCDIC strings that
represent hexadecimal values. The output of X2C is binary, while the output of X2D
is an EBCDIC string that represents a decimal value.

The input to both functions is hexadecimal 'F1C6'. X2C tells REXX to convert the
EBCDIC string into its binary hexadecimal form. The EBCDIC string 'F1C6'
represents the hexadecimal value '1F'. The output, then, is '1F'. Try executing:
say x2c('f1c6'x)
say x2c(1F)

Both instructions mean the same thing. By now you can probably predict what will
happen: because the output is binary, either a blank or an odd character will be
displayed.

X2D tells REXX to convert the EBCDIC input of a hexadecimal value into the
EBCDIC representation of its decimal equivalent. The EBCDIC string 'F1C6'
represents a hexadecimal value of 1F. Decimal notation for hexadecimal '1F' is 31.
The EBCDIC representation of '31' is 'F3F1'. Try:
say x2d('f1c6'x)
say x2d(1F)

Both instructions mean the same thing. The output is EBCDIC, so you will see the
characters 31 displayed on your terminal.

Reading 2 continues in Chapter 5, “Conversations,” on page 89.

Character Sets
�Reading 3�

Reading 2

86 z/VM: REXX/VM User’s Guide

To translate from one character set to another (for example, to translate data before
sending it from an EBCDIC computer to an ASCII printer) use the TRANSLATE()
function.

Another use would be for changing punctuation, as in this example.

To help make up strings to put in translation tables use the XRANGE() function.
For more information on this function see to the z/VM: REXX/VM Reference.

The VERIFY() Function
To find out whether a string contains only characters of a given character set, use
the VERIFY() function.

�� VERIFY(string,reference) ��

returns the position of the first character in string that is not also in reference. If all
the characters in string are also in reference, zero is returned. For example:

Reading 3 continues in Chapter 5, “Conversations,” on page 89.

/* NOPUNCT EXEC */
/* Example: using the TRANSLATE() function to change */
/* unwanted characters to BLANK */
text = "Listen, my children, and you shall hear",

"Of the midnight ride of Paul Revere"
say wordpos("my children",text) /* says "0", because the */

/* word in TEXT is */
/* "children," */

/*---*/
/* Say whether "my children" can be found in TEXT */
/*---*/

/* remove punctuation */
nopunct = translate(text," ",".;:!,?")
say sign(wordpos("my children",nopunct))

/* says "1" */
say sign(wordpos("kids",nopunct))

/* says "0" */

Figure 49. NOPUNCT EXEC

/* DIGITS EXEC */
/* Example: testing that all input characters are valid */
say "Please enter the serial number"
say "(eight digits, no imbedded blanks or periods)"
pull serial rest
if verify(serial,"0123456789") = 0,
& length(serial) = 8,
& rest = ""
then say "Accepted"
else say "Incorrect serial number. Please start again"

Figure 50. DIGITS EXEC

Reading 3

Chapter 4. Expressions 87

Reading 3

88 z/VM: REXX/VM User’s Guide

Chapter 5. Conversations

In this chapter:

Reading 1 immediately following, describes:

v How to write lines to the user’s screen using the SAY
instruction

v How to obtain data from the user’s keyboard using the PULL
instruction

v How to translate values to uppercase using the UPPER
instruction

v How to parse this data; that is, to separate it into words and to
assign each word or group of words to a different REXX
variable.

Reading 2 on page 94, describes:

v How to obtain data from the command line using the PARSE
instruction

v How to parse options using the ARG instruction

v How to parse variables and expressions.
Reading 3 on page 97, describes:

v How to parse using patterns.

The SAY Instruction
�Reading 1�

To display data on your screen use:

�� SAY
expression

; ��

The expression is computed and the result is displayed as a new line on the
screen. For example, the instruction:
say 3 * 4 "= twelve"

causes this to be displayed:
12 = twelve

If you want to display a clause that occupies more than one line in your program,
use a comma at the end of a line to indicate that the expression continues on the
next line. For example, the instruction:
say "What can't be done today, will have to be put off",

"until tomorrow."

causes this to be displayed:
What can't be done today, will have to be put off until tomorrow.

Notice that the continuation comma is replaced by a blank when the expression is
displayed. (Remember that the continuation comma cannot be enclosed in
quotation marks or the language processor will consider it part of the string.)

© Copyright IBM Corp. 1991, 2009 89

The PULL Instruction
Having asked the user a question using SAY, you can collect the answer using
PULL. When the instruction

�� PULL
symbol

; ��

is executed the program pauses; VM READ appears on the bottom right of the user’s
screen; the user should enter some data on the command line and press Enter.
Whatever the user enters is translated to uppercase and then assigned to the
variable SYMBOL.

To get the data just as it is, without having the lowercase letters translated to
uppercase, use:

�� PARSE PULL
symbol

; ��

This example uses both PULL and PARSE PULL.

The user’s name will be repeated exactly as it was entered. But ANSWER will be
translated to uppercase. This ensures that whether the user replies yes, or Yes, or
YES, the same action is taken.

The UPPER Instruction
To translate the values of one or more variables to uppercase, use the UPPER
instruction.

�� UPPER � variable ; ��

For example, this might have been used in WHATDAY EXEC, Figure 31 on page
56, to let the user reply in mixed case.

/* CHITCHAT EXEC */
/* Another conversation */
say "Hello! What's your name?"
parse pull name
say "Say," name", are you going to the party?"
pull answer
if answer = "YES"
then say "Good. See you there!"

Figure 51. CHITCHAT EXEC

Reading 1

90 z/VM: REXX/VM User’s Guide

Test Yourself...
1. The following program asks a question:

What happens if the user replies:
a. 21
b. 4
c. Four

2. What would be displayed by:

3. Use XEDIT to create a file called PULLIN EXEC containing the following
program, then try to run the program!

/* WHATDAY2 EXEC */
/* Example: to make the user say what day of the */
/* week it is today. The user's reply may be in */
/* mixed case. */
today = date(weekday)
upper today /* uppercase */
do until reply = today

say "What day of the week is it?"
pull reply /* uppercase */
if reply ¬= today
then say "No, it is" today

end
say "Correct!"

Figure 52. WHATDAY2 EXEC

/* RIDDLE EXEC */

/* Simple question (?) */
say "Mary, Mary, quite contrary"
say "How many letters in that?"
pull ans
if ans = length(that)
then say "Quite right!"
else say "Oh!"

/* NOAH EXEC */

/* Example: expressions that continue for more */
/* than one line. */
x = 3
say "x =" x
say
say "Ham,",

"Shem",
"and Japheth"

say "Silly"
"Billy"

Reading 1

Chapter 5. Conversations 91

Answers:
1. What appears on the screen is:

a. Oh!
b. Quite right!
c. Oh!

Each of these are, of course, followed by Ready;.

2. What appears on the screen is:
noah
x = 3
Ham, Shem and Japheth
Silly

10 *-* "Billy"
+++ RC(-3) +++

Ready;

As there is no comma after Silly, Billy is treated as a command. If no such
command exists CMS sets the return code to minus three. So the language
processor displays the line that caused the error and the return code.

3. Did it work? If not, study the error messages and make sure you copied
everything correctly.

a. Notice that:

v When you run the exec, everything you type in gets changed to
uppercase (capital) letters.

v You are not given any blanks between the old TEXT and the new INPUT.

b. Now alter pull input to parse pull input. Alter the concatenate operator
“||” to a single blank and try again. Notice that:

v Your input does not get changed to uppercase.

v You are always given one blank between the old TEXT and the new
INPUT.

v You cannot get out of the program by entering quit. But you can get out
by entering QUIT.

Parsing Words
PULL can also fetch each word into a different variable. In the following example
FIRST, SECOND, THIRD, and REST have been chosen as the names of variables:

/* PULLIN EXEC */

/* Example: appending input, using PULL, */
/* to a REXX variable */
text = ""
do until input = "QUIT"

say "Text so far is:"
say text
say "Would you like to add to that?",

" If so, type your message.",
" If not, type QUIT."

pull input
text = text||input

end

Reading 1

92 z/VM: REXX/VM User’s Guide

If you type “three wise men on camels” after the prompt (with five spaces
between “men” and “on”), you will see this:
parsword
Please enter three or more words:
three wise men on camels
THREE WISE MEN ON CAMELS
Ready;

As usual, the program pauses and the user can type something on the command
line. When the user presses Enter, the program continues. The variables are given
the values as follows:

Variable Value

FIRST “THREE”

SECOND “WISE”

THIRD “MEN”

REST “ ON CAMELS”

In general, each variable gets a word (without blanks) and the last variable gets the
rest of the input, if any (with blanks). If there are more variables than words, the
extra variables are assigned the null value.

To make sure that the user types in the right number of words, provide one extra
variable and test that it is empty. Also, test the variable that holds the last word the
user is expected to enter. By testing both variables for a null value, you can be sure
that each of your variables contains exactly one word.

The Period as a Placeholder
The symbol “.” (a period by itself) may not be used as a name but it may be used
as a place-holder with the PULL instruction. For example,
pull . . lastname .

/* PARSWORD EXEC */
/* An exec that parses words. */
say "Please enter three or more words:"
pull first second third rest
say first second third rest

Figure 53. PARSWORD EXEC

/* FUSSY EXEC */
/* Example: getting the number of words that you want */
good = 0
do until good

say "Please enter exactly three words"
pull first second third rest
select

when third = "" then say "Not enough words"
when rest ¬= "" then say "Too many words"
otherwise good = 1

end
end

Figure 54. FUSSY EXEC

Reading 1

Chapter 5. Conversations 93

would discard the first two words, assign the third word into LASTNAME, and
discard the remainder of the input.

Test Yourself...
1. What will be displayed on the screen when this program is run?

2. Write a program that asks the user for his name and greets him by his first
name. Your program should ignore any other names.

Answers:
1. What appears on the screen is:

pulling
Where did Jack and Jill go?
To fetch a pail of water
To fetch water
Will you buy me a diamond ring?
Yes, if I can afford it
YES,
Ready;

2. A possible answer would be:

Reading 1 continues in Chapter 6, “Commands,” on page 99.

Getting Data from the Command Line
�Reading 2�

When you want to run your exec, type its file name on the command line. This can
be followed by more data, called arguments.

To obtain the data that the user entered on the command line when starting your
program, use the ARG instruction. ARG will parse the arguments in the same way
that PULL parses data from the keyboard, except that the first word entered on the

/* PULLING EXEC */

/* Example: the PULL instruction */
Say "Where did Jack and Jill go?"
parse pull one two three four five six .

/* User replies "To fetch a pail of water" */
say one two six
say
Say "Will you buy me a diamond ring?"
pull reply .

/* User replies "Yes, if I can afford it" */
say reply

/* HOWDY EXEC */

/* Example: selecting a single word */
say "Howdy! Say, what's your name?"
pull reply . /* The period causes second */

/* and subsequent words to */
/* be ignored */

say "Pleased to meet you," reply

Reading 1

94 z/VM: REXX/VM User’s Guide

command line (the name of the exec) is not parsed. (The ARG instruction gives the
same results as the PARSE UPPER ARG instruction.)

In the following program FIRST, SECOND, THIRD, and REST are the variable
names:

If you type “fresh green salad and olives” (with three spaces between “salad”
and “and”), after the exec name, you will see this:
mix fresh green salad and olives
FRESH GREEN SALAD AND OLIVES
Ready;

When the ARG instruction is executed, the variables are given the values as
follows:

Variable Value

FIRST “FRESH”

SECOND “GREEN”

THIRD “SALAD”

REST “ AND OLIVES”

Mixed Case
To obtain the data that the user entered on the command line when starting your
program, without translating alphabetic characters in the data to uppercase, use the
PARSE ARG instruction.

Recognizing Options
In CMS, the ordinary arguments of a command are separated from the options by a
left parenthesis. Optionally you can mark the end of the options with a right
parenthesis if you wish.

For example,
SCRIPT myfile (TWOPASS CONTINUE)

tells SCRIPT to process MYFILE SCRIPT with the options TWOPASS and
CONTINUE.

Your REXX program can handle data from the command line in a similar way, by
using string patterns.

String Patterns
To split up the data being parsed, use string patterns. If your PARSE instruction
specifies a string (that is, one or more characters enclosed in quotation marks) the
data being parsed will be split at the point where the string is found. In this next
example, the first pattern is “(” and the second pattern is “)”. The ARG instruction

/* MIX EXEC */
/* Example: this program starts by assigning the words */
/* from the command line to REXX variables */
arg first second third rest
say first second third rest

Figure 55. MIX EXEC

Reading 2

Chapter 5. Conversations 95

parses the data from the command line.

If you type “coffee beans (fresh roasted” after the exec name, you will see this:
take coffee beans (fresh roasted
COFFEE BEANS FRESH ROASTED
Ready;

When the ARG instruction is executed:

v The words in front of the first pattern will be parsed in the usual way, into DRINK,
TYPE, and SHELF. For this example, SHELF will be set to null.

v The words between the first pattern and the second pattern (if there is one) will
be parsed in the usual way, into OPT1, OPT2, and OPT3. For this example,
OPT3 will be set to null.

v If there is a second pattern, the words that followed it will be parsed into REST.
For this example, REST will be set to null.

This technique of parsing using string patterns can be used with any of the parsing
instructions.

Parsing Variables and Expressions
As well as parsing replies from the user and the data from the command line, you
can parse variables and expressions.

�� PARSE VARname
VALUE WITH

expression

�

argument
; ��

For example:

/* TAKE EXEC */
/* Example: recognizing options */
arg drink type shelf "(" opt1 opt2 opt3 ")" rest
say drink type shelf opt1 opt2 opt3 rest

Figure 56. TAKE EXEC

/* PARSING EXEC */
/* Examples: parsing variables and expressions */
phrase = "Three blind mice "
PARSE VAR phrase number adjective noun
say number /* says "Three" */
say adjective /* says "blind" */
say noun /* says "mice" */
PARSE VALUE copies(phrase,2) WITH . a . b . c
say b a c /* says "Three blind mice" */
/* and, finally, a very useful trick for taking the */
/* first word away from a sentence */
PARSE VAR phrase first phrase
say first /* says "Three" */
say phrase /* says "blind mice" */

Figure 57. PARSING EXEC

Reading 2

96 z/VM: REXX/VM User’s Guide

Test Yourself...
Modify MYPROG EXEC in Figure 42 on page 75 to use the ARG instruction. Make
a further modification to test for a CONTINUE option. Allow any abbreviation of
COntinue that is two or more letters long. Test for incorrect options.

Answer:
A possible solution is:

When run, the following is displayed:
myprog2
This program processes the input file to give ...
... ...
Correct format is:

�� MYPROG2 filename filetype
filemode (COntinue)

��

Function performed is:
Rhubarb, rhubarb, rhubarb.
Ready;

Reading 2 continues in Chapter 6, “Commands,” on page 99.

Parsing Using Patterns
�Reading 3�

The idea of parsing using patterns is fully explained in your z/VM: REXX/VM
Reference; however, we will briefly describe parsing here.

/* MYPROG2 EXEC */

/*
This program processes the input file to give ...
... ...
Correct format is:

MYPROG2 filename filetype [filemode] [(COntinue [)]]
Function performed is:
Rhubarb, rhubarb, rhubarb.
*/
arg fn ft fm "("option")" rest
if fn = ? | fn = "" | ft = "",
| option ¬= "" & ¬ abbrev(CONTINUE,option,2),
| rest ¬= ""
then do

do line = 2 by 1 while sourceline(line) ¬= "*/"
say sourceline(line)

end
exit

end
/*--*/
/* Main program starts here. */
/*--*/
say "This is the program"
if abbrev(CONTINUE,option,2)
then say "If an error is detected, processing",

"will continue"

Figure 58. MYPROG2 EXEC

Reading 2

Chapter 5. Conversations 97

Data can be parsed using patterns. A pattern is part of the template of a PULL,
ARG or PARSE instruction and is recognized if it is:

v In quotation marks, like '(' and ')' in the MYPROG2 EXEC on page 97.

v In parentheses (meaning that it is the name of a variable)

v An unsigned number (meaning that parsing is to continue at the specified
character position)

v A signed number (meaning that parsing is to continue at the specified character
position, relative to the first character of the last match).

Here is a useful function, in which the second PARSE instruction uses a variable as
a pattern.

Reading 3 continues in Chapter 6, “Commands,” on page 99.

/* CHANGE EXEC */
/* Function: CHANGE(string,old,new) */
/* */
/* Like XEDIT's “C/old/new/1 *” */
/* */
/* Changes all occurrences of “old” in “string” */
/* to "new". If “old” == “”, then “new” is attached */
/* to the beginning of “string”. */
parse arg string, old, new
if old==“” then return new||string
out=“”
do while pos(old,string)¬=0

parse var string prepart (old) string
out=out||prepart||new

end
return out||string

Figure 59. CHANGE EXEC

Reading 3

98 z/VM: REXX/VM User’s Guide

Chapter 6. Commands

In this chapter:

Reading 1 immediately following, describes:

v How to issue commands to CMS and CP from within your
exec

v What are return codes from commands

v The REXX special variable, RC.
Reading 2 on page 105, describes:

v How to debug commands

v How to write a common routine to handle nonzero return
codes

v How to access messages from a repository file

v How to suppress messages issued by CMS commands.
Reading 3 on page 115, describes:

v How to suppress messages issued by CP commands

v How to obtain a reply from a CP command

v Using the COMMAND environment as an alternative
environment for issuing CMS and CP commands.

Issuing Commands to CMS and CP
�Reading 1�

The language processor can operate in a number of environments (for example,
CMS or XEDIT). The way the language processor handles commands depends on
the environment it is operating in. For the moment, to keep things simple, let us
assume that your program was started by typing its name on the CMS command
line. In this case, your program is in the CMS environment.

Clauses That Become Commands
Any clause in your program that the language processor does not recognize as an
instruction, an assignment, a label, or a null clause will be evaluated and passed to
the appropriate environment for execution. For example, if the environment is CMS,
CMS and CP commands will be handled in the same way as if they had been
entered on the CMS command line.
/* Example: a CMS command in a REXX program */
"ERASE OLDSTUFF SCRIPT A"

The clause that has been recognized as a command is treated as an expression.
The language processor will compute the value of the expression in the usual way,
and will pass the result to the environment. The expression is always evaluated
first.

This rule is extremely useful, but you must be careful how you use REXX operators
and special characters. Also, look out for use of duplicate names.

v In this example, the value of a variable is substituted in an expression, before the
expression is passed to CMS.

© Copyright IBM Corp. 1991, 2009 99

v If you want to use a REXX operator or special character as an ordinary
character, then you must put it in quotation marks. This is because expressions
are evaluated before they are passed to an environment. Therefore, any part of
the expression that is not to be evaluated should be written in quotation marks.

For example:

In Figure 61, if the asterisk was not in quotation marks, the language processor
would attempt to multiply ERASE by LIST!

Note: Remember to put quotation marks around all operators and parentheses
unless already enclosed in quotation marks. Either of the following
examples is correct. The last example is better, since nothing has to be
evaluated by REXX.
"COPYFILE" MYFILE SCRIPT A "=" BACKUP A "(REPLACE"

COPYFILE MYFILE SCRIPT A "=" BACKUP A "("REPLACE

"COPYFILE MYFILE SCRIPT A = BACKUP A (REPLACE"

Refer to “When to Use Quotation Marks” on page 101 for more information.

v Another difficulty is the use of duplicate names. In Figure 62 on page 101, the
programmer has chosen A as the name of a variable. In the COPYFILE
instruction, A is used as the file mode and must be enclosed in quotation marks;
otherwise, the current value of A would be substituted.

/* ERASER EXEC */
/* Example: to erase a number of SCRIPT files. */
do until fn = "

say "Enter file name of file to be erased"
say " (To return to CMS, enter a null line)"
pull fn

/* The user replies "myfile", */
/* FN = MYFILE */

if fn ¬= " then
"ERASE" FN "SCRIPT" /* This clause is treated as */

/* an expression. The result,*/
/* which (in this example) is */
/* ERASE MYFILE SCRIPT */
/* is passed to CMS */

end

Figure 60. ERASER EXEC

/* ELIST EXEC */
/* Example: to erase all the files on file mode A */
/* that have a file type of LIST */
"ERASE * LIST" /* This clause is treated as */

/* an expression. The result */
/* ERASE * LIST */
/* is passed to CMS */

Figure 61. ELIST EXEC

Reading 1

100 z/VM: REXX/VM User’s Guide

This example leads on to a more general question.

When to Use Quotation Marks
The syntax for REXX expressions is very flexible. If a symbol, that is not the name
of a variable, is written without quotation marks, no error is signaled. The value
used in the result is the symbol itself, translated to uppercase. This makes it easier
to write simple programs in REXX than in some other languages. However, you
must be careful never to use a symbol to stand for itself, when a variable of the
same name exists. (In Figure 62, A is the name of a variable, so it must not be used
as the literal name of a file mode without putting quotation marks around it.)

In large programs, or programs that are intended to be very reliable, you can
voluntarily adopt the rule that every symbol that is not the name of a variable
should be in quotation marks. In the example BACKUP EXEC in Figure 62, the
COPYFILE command would be written:
"COPYFILE" a "SCRIPT A = BACKUP A (REP"
Here, everything is in quotation marks except the symbol "a",
which is the name of a variable.

CP Commands
You can write CP commands in a REXX program. Our example is a program that
lets you use files that are on another user’s disk. The CP command LINK makes
another user’s disk available to you.

�� LINK
TO

userid hisdisk mydisk
mode password

��

where:

userid is the user ID of the person the disk belongs to.

hisdisk
is the virtual address of his disk.

mydisk
is the virtual address that the disk will have on your system. Choose any
number that you do not already use.

/* BACKUP EXEC */
/* Example: to save copies of a number of SCRIPT */
/* files. Each copy is given the same file name */
/* as the original, and a file type of BACKUP. */
do until a = "

say "Enter file name of file to be backed up"
say " (To return to CMS, enter a null line)"
pull a

/* The user replies "myfile", */
/* A = MYFILE */

if a ¬= " then
"COPYFILE" a "SCRIPT A = BACKUP A (REP"

/* This clause is treated as an */
/* expression. The result, which in */
/* this example is */
/* COPYFILE MYFILE SCRIPT A = BACKUP A (REP */
/* is passed to CMS */

end

Figure 62. BACKUP EXEC

Reading 1

Chapter 6. Commands 101

mode, password
may be required in some installations but are not used in the example
found in Figure 63.

(For an introduction to this subject, see “LINK” in the z/VM: CMS User’s Guide. For
full details, see the z/VM: CP Commands and Utilities Reference.)

After LINKing to the other user’s disk, you can use the CMS command ACCESS to
make the files on his disk accessible to you.

�� ACCESS mydisk filemode ��

For mydisk, use the same 3-digit number as you used in the link command. For
filemode, choose any letter that you do not already use.

Now for the example, suppose someone in your support organization has a number
of useful programs that you would like to use. You know that:
v His user ID is HELPDESK.
v The programs are on his disk 196.
v You will not need to use a disk password.

Here is a REXX program that you can use to make everything on his disk available
to you.

To run the program, type in the command LINKHELP.

Summary
A clause that is an expression by itself will be evaluated, and the result will be
passed to the specified environment. By default the result will be passed to CMS; if
the result is not known to CMS, it will be passed to CP.

Return Codes
When you write a CMS or CP command in your exec, you should consider what
would happen if the command failed to process correctly. For example, a
COPYFILE command might result with an error because the user’s disk was full.
After such an error, you should at least EXIT from your program. You may also
want to issue a warning message to the user.

Here is how you discover such an error. When commands have finished executing,
they always provide a return code. A return code of zero nearly always means “all’s
well”. Any other number usually means that something is wrong. You can see these
codes on your screen when you enter CMS commands from the command line, as
in these examples:
copyfile profile exec a profile backup a

Ready;

link fred 591 591

/* LINKHELP EXEC */
/* For linking to Disk 196 belonging to HELPDESK */
"LINK HELPDESK 196 200" /* a CP command */
"ACCESS 200 B" /* a CMS command */

Figure 63. LINKHELP EXEC

Reading 1

102 z/VM: REXX/VM User’s Guide

FRED not in CP directory
Ready(00053);

access 591 b

DMSACC113S B(591) not attached or invalid device address
Ready(00100);

copyfile profile exec a = = b (for luck

Invalid parameter LUCK in the option FOR field.
Ready(00024);

erase junk exec

File JUNK EXEC A not found
Ready(00028);

The first COPYFILE command worked correctly so the return code was zero and
CMS displayed the Ready; message on the screen. (When the return code is zero,
CMS does not display the return code.) All the other commands failed so CMS
displayed their return codes as part of the Ready; message. For instance, the return
code from the LINK command was 53.

Now that you understand how CMS handles commands and return codes, let us
see how the language processor handles them.

Any command that would be valid on the CMS command line is valid as a clause in
a REXX program. The language processor treats the clause like any other
expression, substituting the values of variables, and so on. The language processor
takes the result and passes it to CMS or CP. (The rules are the same as for
commands on the CMS command line; for details, see “The CMS Environment” in
the z/VM: REXX/VM Reference.)

When the language processor has issued a command and CMS or CP has finished
executing it, the language processor gets the return code and stores it in the REXX
special variable RC. In your program, you should test this variable to see what
happened when the command was executed.

For example:
"COPYFILE PROFILE EXEC A PROFILE BACKUP A"
if rc ¬= 0
then do

say "Unexpected return code" rc "from COPYFILE command"
exit

end

The EXIT instruction causes your exec to finish. The language processor gives
control back to CMS. This will be explained later in “The EXIT Instruction” on page
149.

To find out what return codes can be expected from a CMS command, look up the
command in the z/VM: CMS Commands and Utilities Reference. Return codes are
listed in the last paragraph of the description of each command.

The return codes associated with CP commands directly correspond to the
message numbers. For example, if you received a return code of 22 when
executing the LINK command, you could look at the description for message
number 022:

Reading 1

Chapter 6. Commands 103

HCPLNM022E Virtual device number was not supplied or it was invalid

The CP commands are described in the z/VM: CP Commands and Utilities
Reference.

Special Variables
RC is one of the REXX special variables. The other special variables are RESULT
and SIGL. You may use RC, RESULT, and SIGL as the names of your own
variables, but you should always remember that any of them may be assigned new
values by the language processor. For example, the special variable RC is assigned
a new value when a command has been executed. (For full details, see the z/VM:
REXX/VM Reference.)

Test Yourself...
A program is required that will create a file called PR ALL. In this file there is to be
a list of all the files on file mode A (a directory in your file space or a R/W minidisk)
whose names begin with “PR”.

v Study the CMS command LISTFILE. You will find it in the z/VM: CMS Commands
and Utilities Reference, or you can get a short description displayed on your
screen by entering HELP LISTFILE. Use the LISTFILE command to display the
required list of files on your screen.

v Study the EXEC option of the LISTFILE command. Write a REXX program that
issues a command to generate the required file.

v At the end of the description of LISTFILE in the z/VM: CMS Commands and
Utilities Reference, you will find a list of possible return codes. Modify your
program to handle all possible errors.

v Add to your program a command that RENAMEs the file that has been created
as PR ALL A.

v Test your program by running it twice.

Answer:

Reading 1 continues in Chapter 7, “XEDIT,” on page 121.

Debugging Individual Commands
�Reading 2�

/* LISTPR EXEC */
/* Lists all the files on file mode A whose file names */
/* begin with "PR". The result is written into the */
/* file PR ALL A. Any previous version of that file */
/* is overwritten. */
/* */
/* CMS EXEC A is used as a work file, then destroyed. */
"LISTFILE PR* * A (EXEC"
if rc ¬= 0

then do
say "Unexpected return code" rc "from LISTFILE command"

exit
end
"ERASE PR ALL A"
"RENAME CMS EXEC A PR ALL A"
if rc ¬= 0
then

say "Unexpected return code" rc "from RENAME command"

Reading 1

104 z/VM: REXX/VM User’s Guide

If you cannot understand what is happening when you enter a command, it is
possible that your program did not issue the command correctly. To be sure about
this, trace the command that is behaving mysteriously.
mad = "Delirious"
...
trace r
"SCRIPT MAD"
trace n

Debugging Execs That Contain Commands
As you know, a program that issues a command should always test the return code
immediately afterward to see if all is well. One way of doing this is to write:
if rc ¬= 0 then

Also, for programs that are still being tested (or redesigned, or debugged), use the
TRACE Errors instruction
TRACE E

at the beginning of your exec. A nonzero return code will cause the language
processor to display the line number of the command in your program, the
command, and the return code.

Making a Common Routine for Handling Return Codes
The third way, suitable for programs that can be used by other people, is to use the
SIGNAL ON ERROR instruction. This instruction switches on a detector in the
language processor that tests the return code from every command. If a nonzero
return code is detected, the usual sequence of clauses is abandoned. Instead, the
language processor searches through your program for the label
ERROR:

Processing continues from there. (This label must be the symbol ERROR followed by
a colon.) The line number of the command is stored in the REXX special variable
SIGL. For more information, see “The CALL ON Condition” on page 160 and “The
SIGNAL ON Condition” on page 160

You can use SIGL to tell the user which command caused typical processing to be
interrupted:
...
signal on error
COPYFILE
"RENAME"
exit /* End of main program */
/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/
ERROR:
say "Unexpected Return Code" rc "from command:"
say " " sourceline(sigl)
say "at line" sigl"."

The EXIT instruction is put there to stop the main program from running on into the
error handling routine.

To switch off the detector, use the instruction:
SIGNAL OFF ERROR

Reading 2

Chapter 6. Commands 105

If you know that one of your commands can give a nonzero return code, you must
switch off for that one command. For example, if you do not know whether OLD
LISTING exists, but need to erase it if it does, this series of instructions will do.
signal off error
"ERASE" old listing a
signal on error

Getting Messages from a Repository File
You can store message texts in a single file that is separate from your program.
The CMS XMITMSG command lets you then access and display these messages
from a REXX EXEC. See the z/VM: CMS Commands and Utilities Reference for a
complete description of XMITMSG.

When using XMITMSG in a REXX EXEC, variables are enclosed in quotation
marks. For example:

Note: This is not a complete program and cannot be executed by itself.

How to Suppress Messages Issued by CMS Commands
To suppress all output (except Severe and Terminating messages from CMS
commands), use the Halt Typing command.
SET CMSTYPE HT

To resume typical output, use the Resume Typing command.
SET CMSTYPE RT

/* In these examples we use message number 3, */
/* which has one substitution. */

buffer = 'bufferit' /* Variable with the name of buffer. */

XMITMSG 003 BUFFER /* This will not work because the */
/* variable buffer resolves to */
/* bufferit, which is itself not a */
/* variable, so no substitution */
/* takes place. */

'XMITMSG 003 BUFFER' /* This example will work because */
/* the variable buffer is in */
/* quotation marks and gets passed */
/* to XMITMSG. */
/* bufferit is substituted. */
/* continued ... */

'XMITMSG 003 "BUFFER"' /* Here we substitute the literal */
/* string BUFFER, which will be */
/* taken as the substitution. */

'XMITMSG 003 8002' /* This example shows the use of a */
/* dictionary item, (8002). */
/* The value of 8002 as a dictionary */
/* item is the literal string BUFFER.*/

'XMITMSG 003 "8002"' /* This example is another example */
/* of passing literal strings. */
/* In this case, the number 8002 */
/* gets passed as a substitution */
/* instead of resolving to BUFFER */
/* because 8002 is in quotation */
/* marks.

Reading 2

106 z/VM: REXX/VM User’s Guide

Be sure that your program processes SET CMSTYPE RT before you need to
process a SAY instruction. Also, remember that SET CMSTYPE RT will change the
special variable RC. If the old value will be needed, it must be saved. In this
example, the return code we are interested in is saved in RCSAVE (RC is
overlayed by the second SET command).
oldtype = CMSFLAG("CMSTYPE")

if oldtype=1
then oldtype=RT
else oldtype=HT

"SET CMSTYPE HT"
"STATE" fn ft fm /* Does the file exist? */
rcsave = rc
"SET CMSTYPE" oldtype /* Assigns another value to RC */
if rcsave = 28 /* Is the return code from the */
then ... /* STATE command 28 (not found)? */

A Useful Subroutine
All of the preceding code makes your program rather difficult to read. So it would be
better to use a subroutine, like this:

Note: This is not a complete program and cannot be executed by itself.

...
signal on error
...
call quiet "STATE" fn ft fm /* Does the file exist? */
if RESULT = 28 then ... /* Set by subroutine's */

/* RETURN instruction */
...
exit /* End of main program */
/*--*/
/* QUIET */
/* ===== */
/* Subroutine to issue a CMS command without displaying */
/* a message on the screen and without jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, the REXX special */
/* variable RESULT contains the return code from */
/* this command. */
/*--*/
QUIET:
signal off error /* Coding note: the null string */
"SET CMSTYPE HT" /* prevents ARG from being */
""arg(1) /* treated as an instruction. */
rcsave = rc
"SET CMSTYPE RT"
return rcsave
/*--*/
/* Error handler: common exit for nonzero return codes */
/*--*/
ERROR:
say "Unexpected Return Code" rc "from command:"
say " " sourceline(sigl)
say át line" sigl..."

Figure 64. Example Subroutine

Reading 2

Chapter 6. Commands 107

Test Yourself...
Review the following program. Make sure that you understand what it is supposed
to do. Will it always work correctly?

/* PAIRS EXEC */
/* This program requests the user to supply a list of */
/* files (file name file type only) and replies, for */
/* each file: */
/* */
/* * whether it is on the user's directory or minidisk */
/* accessed as file mode A. */
/* */
/* * whether it is on the directory or minidisk */
/* accessed as file mode L. */
/* */
/* * if there is a copy on each file mode, whether */
/* these copies are the same. */
/* */
/* To end the list, the user returns a null line. */
/* */
/* Command format: PAIRS */
if arg() ¬= 0 /* help needed */
then do n = 1 until LEFT(line,2) ¬= "/*"

line = sourceline(n)
say line
end
else do forever

.

.

.
do until ft ¬= " & rest = "" /* Get fn ft */

say "Enter file name and file type",
"(or null line to exit)"

pull fn ft rest
if fn = "" then exit

end
home = ""
call quiet "STATE" fn ft "A" /* Compute Home, a */

if result = 0 then home = "A" /* list of file modes */
call quiet "STATE" fn ft "L" /* where the file */
if result=0 then home = home "L" /* can be found */
select

when words(home) = 0
then say "No files found"
when words(home) = 1
then say "Only one file found (on file mode "home")"
otherwise
call quiet "COMPARE" fn ft "A" fn ft "L"

/* continued ... */

Figure 65. PAIRS EXEC (Part 1 of 2)

Reading 2

108 z/VM: REXX/VM User’s Guide

Answer:
The program will run correctly.

Using the Program Stack
The program stack passes data to certain CMS commands, or to obtain data from
them.

v We begin with a careful description of the program stack; this will make it easier
for you to use later.

v This is followed by a cookbook list of things to do when using the program stack
in a REXX program.

v Next comes an example of a command putting data into the program stack.
Some commands that can do this are:
LINEIN/CHARIN to read lines or characters from a directory or

minidisk
IDENTIFY to obtain the node ID, rscs ID, and so on
LISTDIR to find out about directories
LISTFILE to find out about files
NAMEFIND to obtain information from a NAMES file
QUERY to find out about your CMS virtual machine
RECEIVE to read in files and notes
RDR to find out what files are in your reader.

select
when result = 0
then say "Same file found on both file modes",

"(A and L)"
when result = 4, /* files do not match */
| result = 32, /* files have different */

, /* formats or LRECLs */
| result = 40 /* files not the same length */
then say "Files on file modes A and L",

"are not the same"
otherwise say "Unexpected return code" result,

"from COMPARE command"
end /* select result */

end /* select words() */
end /* end do foreever */
exit /* end of main program */
/*--*/
/* Subroutine to issue a CMS command WITHOUT displaying */
/* a message on the screen and WITHOUT jumping to ERROR */
/* if the return code is nonzero. */
/* */
/* The first argument is the command to be executed. */
/* On returning to the caller, RESULT contains the */
/* return code from this command. */
/*--*/
QUIET:
signal off error
"SET CMSTYPE HT"
""arg(1)
rcsave = rc
"SET CMSTYPE RT"
return rcsave

Figure 65. PAIRS EXEC (Part 2 of 2)

Reading 2

Chapter 6. Commands 109

v And finally, an example of a command that takes data from the program stack.
Some commands that can do this are:
LINEOUT/CHAROUT to write lines or characters to a directory or

minidisk
COPYFILE to copy files (using the SPECS option)
FORMAT to format a minidisk
SORT to sort a file.

Definitions
In computer science, a stack is a list of items that you can work with from only one
end, the top. You can PUSH an item onto the stack or PULL an item off from it. The
item you PULL off will always be the last item you (or somebody else) PUSHed on.
This method is called LIFO—last in, first out.

A queue, on the other hand, is a list of items which you can work with from both
ends. You can QUEUE (or add) items only at the back and you can PULL items
only off at the front. This method is called FIFO—first in, first out.

The CMS program stack can be used both as a stack and as a queue.

PUSH ───�──┐ ┌─────� PULL
│ │
| |
├──────────┤
│ │
├──────────┤
│ │
├──────────┤
│ . │
│ . │
│ . │
├──────────┤
│ │
└──────────┘

Figure 66. A Stack Using Push and Pull

┌──┬────────┬──┬──┬──┐
│ │ │ │ │ │

QUEUE───�│ │ . . . │ │ │ │───�PULL
│ │ │ │ │ │
└──┴────────┴──┴──┴──┘

Figure 67. A Stack Using Queue and Pull

Reading 2

110 z/VM: REXX/VM User’s Guide

You can use the program stack as a kind of mailbox. CMS commands, for example,
can put data in and a REXX instruction can retrieve it for you. Or, a REXX
instruction can put data in and a CMS command can retrieve it.

In fact, the program stack can be accessed using REXX instructions, CMS
commands, CMS EXEC control words, Callable Services Library routines, and
Assembler language macros. But we shall only discuss the first two of these. The
table gives you the keywords used in the different languages.

Table 3. Keywords Used in Programming Languages

REXX instruction QUEUE PUSH PULL

CMS command option (STACK FIFO (FIFO (STACK LIFO (LIFO Depends on
command

CMS EXEC or EXEC 2
control word

&STACK FIFO &STACK LIFO &READ

Assembler macro CMSSTACK FIFO CMSSTACK LIFO LINERD

Callable Services
Library routines

StackWrite StackWrite StackRead

where:

FIFO means First In, First Out (as in a queue).

LIFO means Last In, First Out (as in a stack).

Buffers
A buffer is a general term for a part of the computer’s storage that is used for input
or output.

You can build extensions to the program stack, which are called buffers. Usually
there is only one buffer in the program stack.

v You can create new buffers using the MAKEBUF command.

v QUEUE, PUSH and their equivalents put data into the last buffer created.

v PULL and its equivalents remove data from the last buffer created until it is
empty, then from the previous buffer until it is empty, and so on.

v When the program stack is completely empty, data is taken from the terminal
input buffer.

This is what you might call a stack of buffers. The entire stack is called the console
stack.

PUSH
┌──┬────────┬──┬──┬──┐ │
│ │ │ │ │ │�───┘

QUEUE───�│ │ . . . │ │ │ │
│ │ │ │ │ │─────�PULL
└──┴────────┴──┴──┴──┘

Figure 68. A Stack Using Queue, Push, and Pull

Reading 2

Chapter 6. Commands 111

PULLQUEUE

PUSH

Terminal

::

Buffer n

Buffer 0

:

:
Program

Stack

Terminal
Input
Buffer

Console
Stack

You may have noticed the terminal input buffer already. The buffer stores data from
the CMS command line when you type ahead and press enter while a previous
command is still executing.

v If there is nothing in the program stack or the terminal input buffer when a PULL
or its equivalent is executed, the program stops, the words VM READ appear in the
bottom right-hand corner of your screen, and nothing happens until you press
Enter, a Program Function key, or certain other keys, depending on the type of
terminal you are using.

How to Use the Program Stack
Using the program stack is not quite as complicated as it looks, (as you will see
when you read the examples which follow.) The safest way to use the program
stack is this:

1. Begin the stack-processing portion of your program with the CMS command
MAKEBUF. This will set up your own buffer in the program stack.

2. Find out how many entries are already on the stack using the QUEUED()
function. For example:
theirs = queued()

3. Use the QUEUE instruction or an equivalent CMS command to put data onto
the program stack.

4. Use the PULL instruction or an equivalent CMS command to take data off the
stack. If you issue too many PULL instructions the user might see, on the
bottom right of the screen:

Reading 2

112 z/VM: REXX/VM User’s Guide

To continue, you must press Enter.

5. It is important to avoid removing items that your program did not place on the
program stack. Remove the items one at a time, first checking that what you are
about to remove is yours. For example:
do while queued() > theirs /* THEIRS are not ours */

pull ... /* (see the preceding
information) */

...
end

6. Be sure that you have removed all your data from the program stack before you
return to CMS. You can use the CMS command DROPBUF to do this.

Each line left in the program stack, when your REXX program has finished and
CMS gets control, will be treated by CMS as a command. Perhaps the user will
see the message:
Unknown CP/CMS command

Or, perhaps something quite unexpected will happen!

This can be simplified slightly. If you are sure that your program will never try to
remove items belonging to other programs from the program stack, you can omit
Steps 2 and 5.

You might also leave out the commands MAKEBUF and DROPBUF, and nothing
would appear to go wrong. But you could have trouble one day, if your exec is
called by a program that also uses the program stack. So it is best to use
MAKEBUF and DROPBUF in all programs that use the program stack.

Example: A CMS Command That Puts Data onto the Program Stack
This simple program issues a warning message when your primary minidisk, file
mode A, is more than 80 percent full. This means that it is time to get a bigger
minidisk, or else erase some files you will never need again! You could call this
program from your PROFILE EXEC.

Note: This program does not work for a directory. Although the QUERY DISK
command provides information about accessed minidisks and accessed
directories, the line that describes a directory is different from the line that
describes a minidisk.

Before reading this example, try out the CMS command
QUERY DISK A

Notice that two lines appear on the screen. In a REXX program, to make QUERY
put these two lines into the program stack, use the STACK option of the QUERY
command.

VM READ

Reading 2

Chapter 6. Commands 113

Example: A CMS Command That Requires Data from the Program
Stack

There are several CMS commands that ask questions and require answers from the
user. To provide these answers from your program, use the program stack.

Here is an example. The file PR ALL A is to be copied into a new file, PR
EVERYONE A, moving all the data seven positions to the left.
The COPYFILE command with the SPECS option asks the user to specify the fields

in each line of the input file that are to appear in each line of the output file, and
where in that line they are to appear. For details, see “COPYFILE” in the z/VM:
CMS Commands and Utilities Reference.

In this program, the answer is provided by the language processor; it is QUEUEd
onto the program stack before the COPYFILE command is issued.

/* NEARFULL EXEC */
/* Gives a warning when the user's primary minidisk */
/* (file mode A) is more than eighty percent full */
"MAKEBUF"
"QUERY DISK A (STACK"
if rc = 0 then do

pull /* Discard header */
parse pull "-" percentage .
if percentage > 80
then say "Warning: Your disk",
"is" percentage"% full"

end
else say "NEARFULL EXEC: unexpected return code" rc
"DROPBUF"

Figure 69. NEARFULL EXEC

1 8 80
┌───┬────────────────────────────────────┐

A line in PR ALL A │ │ │
└───┴─────────────┬──────────────────────┘

│
│ blanks

┌─────┘ │
1
 74
 80
┌─────────────────────────────────────┬──┐

A line in PR EVERYONE A │ │ │
└─────────────────────────────────────┴──┘

Reading 2

114 z/VM: REXX/VM User’s Guide

Reading 2 continues in Chapter 7, “XEDIT,” on page 121.

CP Commands
�Reading 3�

You will sometimes need to use CP commands in your programs. The following
explains how to suppress messages and obtain replies from CP commands.

How to Suppress Messages Issued by CP Commands
To issue a command to CP, suppressing messages and obtaining only the return
code, use either the CMS command EXECIO (see the z/VM: CMS Commands and
Utilities Reference) or the CMS command PIPE:
"PIPE CP" cp_command

where:

PIPE is a CMS command.

CP is a CMS Pipelines stage command specifying that the remainder of the
command text is the CP command to be issued. When used in a REXX
program, this can be followed by an expression.

Our example is about a temporary minidisk. If you need to compile something and
there is not enough room for the output files in your file space or on your primary
minidisk (file mode A), you can obtain a temporary minidisk from CP and put the
output files on that minidisk. (Do not put files containing original information on
temporary minidisks; if VM has an error, your files could be lost forever.) To obtain a
temporary minidisk, with the physical characteristics of an IBM* 3380, a virtual
address (vdev) of 192 and an extent of five cylinders, you could type on the CMS
command line:
define t3380 as 192 cyl 5

CP would reply:
DASD 192 DEFINED 0005 CYL

DASD means Direct Access Storage Device; in this case, the reply refers to a
virtual DASD (a minidisk).

To issue the same command from a REXX program suppressing the reply, use:

/* LEFT7 EXEC */
/* This program will copy the file PR ALL A into a */
/* new file PR EVERYONE A, shifting the data in */
/* columns 8 through 80 into column 1, discarding */
/* columns 1 through 7 and making columns 74 through */
/* 80 blank. If the file PR EVERYONE A already */
/* exists it will be overwritten. */
"MAKEBUF"
queue "8-80 1"
"COPYFILE PR ALL A PR EVERYONE A (SPECS NOPROMPT REPLACE"
if rc ¬= 0 then say "Unexpected return code",

rc "from COPYFILE command."
"DROPBUF"

Figure 70. LEFT7 EXEC

Reading 3

Chapter 6. Commands 115

"PIPE CP DEFINE t3380 as 192 cyl 5"
if rc ¬= 0 then ...

How to Obtain the Reply from a CP Command
To obtain the reply from a CP command in a REXX program, use:
"PIPE CP" cp_command "| STEM RESPONSE."

where:

| the CMS Pipelines stage separator that indicates that the output from the
first stage (the reply from the CP command) will be the input to the next
stage (the stem).

STEM a CMS Pipelines stage command that places the input to the stage into a
named stem variable (in this case, RESPONSE.). STEM.0 will contain the
number of lines put in the stem, starting with STEM.1.

In our example, RESPONSE.0 will be the number of lines that would usually be
displayed on your terminal. RESPONSE.1 will be the first line, RESPONSE.2 will be
the second line, and so on. You can also use more advanced features of CMS
Pipelines to process the CP output data before building the stem variable.

Another method of obtaining a reply from a CP command is to use the EXECIO
CMS command (see the z/VM: CMS Commands and Utilities Reference for more
information).

Before reading this next example, try out the command:
Q DASD

CP replies with a list of the minidisks defined for your virtual machine. The TDISK
program in the next example reads this list. It then looks through the list for a vaddr
(virtual address) and a file mode that are not on the list, and which can, therefore,
be used as the vaddr and file mode of a temporary minidisk.

/* TDISK EXEC */
/* This program obtains a temporary minidisk, using */
/* a virtual address (vaddr) and a file mode that are */
/* not already in use. The number of cylinders may */
/* be specified as the first and only argument. The */
/* default is 5. */
/* */
/* If the program was called from the command line and */
/* is successful, the virtual address and file mode are */
/* displayed. Otherwise an error message is displayed. */
/* */
/* If the program was called as a SUBROUTINE (that is, */
/* by a CALL instruction in a REXX program) or as a */
/* REXX function, no messages are displayed. */
/* */
/* If the program is successful, the return code is */
/* zero. If the argument is present and not numeric, */
/* the return code is 16. If all 26 file modes are in */
/* use, the return code is 27. Otherwise, the return */
/* code is that of the CMS or CP command that prevented */
/* success. */

Figure 71. TDISK EXEC (Part 1 of 3)

Reading 3

116 z/VM: REXX/VM User’s Guide

/*--*/
/* Check argument */
/*--*/
if arg() = 0 /* argument supplied? */
then cylinders = 5
else do

arg cylinders .
if ¬ datatype(cylinders,whole)
then do /* help needed */

do n = 1 while LEFT(line,2) = "/*"
line = sourceline(n)
say line

end
return 16

end
end
/*--*/
/* How was this program called */
/*--*/
parse source . howcalled . /* See the REXX/VM */

/* Reference */
/*--*/
/* Find unused virtual address */
/*--*/

/* continued ... */
"MAKEBUF"
signal on error
"PIPE CP QUERY VIRTUAL DASD", /* Query attached dasd. */

"| SPECS WORD 2 1", /* Keep only the virtual addresses.*/
"| JOIN * / /", /* Join them all into one line. */
"| VAR USED" /* Load them into variable USED. */

do newcuu = 200 while pos(newcuu,used) ¬= 0 end
/*--*/
/* Find unused file mode */
/*--*/
alphabet = "ABCDEFGHIJKLMNOPQRTUVWXYZ"
do letter = 1 to 25 until response = "NOT ACCESSED"

"QUERY DISK" substr(alphabet,letter,1) "(LIFO" /* PUSH
*/

pull . . response /* get last line of last reply */
/* pull instruction puts "not */
/* accessed" in uppercase */

end
signal off error; "DROPBUF" /* clear our buffer */

Figure 71. TDISK EXEC (Part 2 of 3)

Reading 3

Chapter 6. Commands 117

The COMMAND Environment
So far, we have said that the language processor handles CMS and CP commands
in exactly the same way as if they had been entered from the CMS command line.
This is called the CMS environment; it was chosen as the default because it is the
one that most programmers will want to use, most of the time. But there is an
alternative environment, the COMMAND environment, which has some advantages.

You should use the COMMAND environment:

1. To avoid calling a user’s exec, which happens to have the same name as a
CMS command. For example, suppose you send a copy of your program to
another user, or put your program in a directory or on a minidisk that other
users can access. Your program contains the clause “sort ... ”; you are telling
the language processor to process the CMS command SORT.

When this command is executed from your program using the usual CMS
search order, there might be a file called SORT EXEC in the directory or
minidisk that the user has accessed as A. If so, CMS will call the user’s exec
instead of the command! As far as you are concerned, the result is
unpredictable. But to have CMS search for a SORT MODULE—CMS
commands are stored in files with a file type of MODULE—write:

"MAKEBUF"; signal on error
if letter = 27 then do

if howcalled = "COMMAND"
then say "All file modes in use"

return 27
end
newfm = substr(alphabet,letter,1)
/*--*/
/* Obtain and format minidisk */
/*--*/
"PIPE CP DEFINE T3380 AS" newcuu "CYL" cylinders
push "TEMP"
push "YES"
"SET CMSTYPE HT"
"FORMAT" newcuu newfm
"SET CMSTYPE RT"
signal off error
"DROPBUF"
exit

/* continued ... */
/*--*/
/* Non-zero return codes */
/*--*/
ERROR:
rcsave = rc
"SET CMSTYPE RT"
"DROPBUF"
if howcalled = "COMMAND"
then do

say "Unexpected return code" rcsave
say "from command" sourceline(sigl)
say "at line" sigl

end
exit rcsave

Figure 71. TDISK EXEC (Part 3 of 3)

Reading 3

118 z/VM: REXX/VM User’s Guide

ADDRESS COMMAND SORT ...

And, so long as the SORT MODULE is not on the user’s disks, your program
will run as you expect.

2. To suppress messages from certain commands. For example, the commands
ERASE, LISTFILE, RENAME and STATE issue the message FILE NOT FOUND
when the specified file is not found and the command was entered from the
command line or from a REXX program. If you think a person using your
program would find this message confusing, write
ADDRESS COMMAND "STATE" fn ft

(for example) and the message will be suppressed.

To suppress nearly all messages, use SET CMSTYPE HT. (See page 106 for
details.)

3. To reduce system overhead. This can be important if the user has a large
number of directories or minidisks accessed. Each time your program issues a
command, CMS searches these directories and minidisks for an exec file of that
name before it searches for a MODULE file. (CMS commands are stored in files
with a file type of MODULE.)

Instead of writing ADDRESS COMMAND in front of each clause, you can write
ADDRESS COMMAND

at the beginning of your program. This has the same effect as if all commands have
a prefix of ADDRESS COMMAND. If you have done this, and you want to switch
back to the CMS environment, use:
ADDRESS CMS

For more information, see the ADDRESS command in the z/VM: REXX/VM
Reference.

Reading 3 continues in Chapter 7, “XEDIT,” on page 121.

Reading 3

Chapter 6. Commands 119

120 z/VM: REXX/VM User’s Guide

Chapter 7. XEDIT

XEDIT is the editor supplied with z/VM. You can customize XEDIT for your own
purposes by writing special REXX programs called macros. This chapter introduces
some important ideas about these programs.

In this chapter:

Reading 1 immediately following, describes:

v How your program can be called from the XEDIT command
line

v How to enter subcommands to XEDIT from your REXX
program

v Names for XEDIT macros

v Return codes from XEDIT subcommands

v How to display messages in the XEDIT message area.
Reading 2 on page 124, describes:

v Note: You should not attempt this reading until you have a
working knowledge of XEDIT.

v How the private variables of XEDIT can be made available to
your REXX program, using the EXTRACT command

v The current line of a file

v An example XEDIT profile.
Reading 3 on page 126, describes:

v How to construct a menu.

XEDIT Subcommands and Macros
�Reading 1�

Commands to XEDIT are usually called subcommands to avoid any possible
confusion with commands to CMS.

When you are using XEDIT and you type a word on the XEDIT command line and
press Enter, XEDIT will treat this as a:

Subcommand If the first word on the command line is one of the
XEDIT subcommands (defined in the z/VM: XEDIT
Commands and Macros Reference), XEDIT will
obey it.

Macro If the word is not a subcommand, XEDIT will look
for a file of the same name with a file type of
XEDIT and execute that. This type of file is called a
macro.

For example, if the file TEN XEDIT, shown in
Figure 72, exists in a directory or on a minidisk that
you have accessed, and you type the word
ten

on the XEDIT command line, XEDIT will try to
execute TEN XEDIT.

© Copyright IBM Corp. 1991, 2009 121

Note: To find a file in a directory, read authority is
required on both the file and the directory. If
the file is locked, the execution will result in
an error and give you an error message.

CMS or CP command If a macro does not exist, XEDIT will try to execute
what is typed in as a CMS or CP command.

XEDIT Macros
A REXX program that issues subcommands to XEDIT is called a macro. It must
have a file type of XEDIT. To indicate that your program is written in the REXX
language, it must begin with a REXX comment, as usual.

Because the file type of your program is XEDIT, the language processor will
assume that the environment is XEDIT. And, therefore, any clause in the program
that the language processor does not recognize as an instruction, an assignment, a
label, or a null clause will be evaluated in the usual way and the result will be
passed to XEDIT for execution.

Naming of XEDIT Macros
XEDIT macros, like other CMS files, can have file names from one-to-eight
characters long. The file names of XEDIT macros should not contain numeric digits.
(This is because XEDIT treats the number as an argument. For example, MYMAC5 is
the same as MYMAC 5.)

Example: Changing the Settings of the Scroll Keys
When you are looking through a file, you will usually want to move forward or
backward a page at a time. Sometimes you may prefer to move forward or
backward half a page at a time. For example, you can use this when checking a
program. This forward and backward movement through your file is called scrolling.

Use XEDIT to create the following file called TEN XEDIT.

Now use XEDIT to display any large file. Type TEN on the XEDIT command line,
and press Enter. Press PF8 to scroll down the file. Each time you press PF8 you
will advance 10 lines down the file. Similarly, each time you press PF7 you will
move 10 lines nearer the top of the file.

To restore the setting that XEDIT usually provides, you could use this program.

/* TEN XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward 10 lines */
/* at a time. */
"SET PF7 UP 10"
"SET PF8 NEXT 10"

Figure 72. TEN XEDIT

Reading 1

122 z/VM: REXX/VM User’s Guide

Return Codes
Your REXX program should be able to handle nonzero return codes from XEDIT
subcommands.

To find out what return codes can be expected from an XEDIT subcommand, look
up the subcommand in the z/VM: XEDIT Commands and Macros Reference. Return
codes are listed in the last paragraph of the description of each command. For
example, the XEDIT subcommand
NEXT

will give a return code of 1 when end of file is reached.

When you are first learning to write XEDIT macros, you should put the instruction
TRACE Errors at the top of your program. This will cause a trace to be displayed if
any XEDIT command gives a nonzero return code. For example:

Executing the command DENTAL from the XEDIT command line would cause the
following to be displayed:
3 *-* "EXTRACT" tooth /* EXTRACT is a valid command, but */

+++ RC(5) ++++

Messages
To display messages in the XEDIT message area, use the XEDIT MSG
subcommand:
MSG text of message

For example:
"NEXT"
if rc = 1 then "MSG" "End of file reached"

Reading 1 continues in Chapter 8, “Control,” on page 129.

/* PAGE XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward one page */
/* at a time. */
"SET PF7 BACKWARD"
"SET PF8 FORWARD"

Figure 73. PAGE XEDIT

/* DENTAL XEDIT */
/* Example: tracing a syntax error */
trace errors
"EXTRACT" tooth /* EXTRACT is a valid command, but */

/* "tooth" is not a valid operand */

Figure 74. DENTAL XEDIT

Reading 1

Chapter 7. XEDIT 123

The EXTRACT Subcommand
�Reading 2�

To obtain almost any variable known to XEDIT, use the EXTRACT subcommand.

For example, the physical size of your screen might be 24 lines or 32 lines; and you
could find out the size of your screen by entering QUERY SCREEN on the XEDIT
command line.

To obtain the same information for use in your REXX program, enter:
EXTRACT /SCREEN/

The EXTRACT subcommand requires a delimiter to separate the operands. In this
book, we shall use / as the delimiter. Notice how / is used in the preceding
EXTRACT command. For this example, it would also be correct to enter:
EXTRACT /SCREEN

The EXTRACT /SCREEN subcommand assigns values to an array of REXX
variables:

SCREEN.0
The number of other variables in the array. (That is, 1 in this case.)

SCREEN.1
Two words, namely the word SIZE followed by the number of lines on the
screen.

We could use this subcommand to extend the program TEN XEDIT, described
above, to handle any size screen:

EXTRACT /SCREEN assigns SIZE 24 or SIZE 32 to SCREEN.1; the SUBSTR() function
returns the number from this; and the value that amount gets will be either 10 (for
24-line screens) or 14 (for 32-line screens).

The Current Line
The current line of a file is used as the starting-point for many XEDIT
subcommands. You can change its physical position on the screen by using the
SET CURLINE subcommand. The default position is the line above the middle of
the screen.

To obtain information about the current line, use the XEDIT subcommand:
EXTRACT /CURLINE

This command assigns values to an array of REXX variables:

/* HALF XEDIT */
/* This program changes the settings of PF Keys 7 and 8 */
/* so that you scroll backward or forward half a */
/* screen at a time. */
"EXTRACT /SCREEN"
amount = (substr(screen.1,6) - 4) % 2
"SET PF7 UP" amount
"SET PF8 NEXT" amount

Figure 75. HALF XEDIT

Reading 2

124 z/VM: REXX/VM User’s Guide

CURLINE.0 The number of other variables in the array

CURLINE.1 The operand that positioned the current line on the screen (see the
z/VM: XEDIT Commands and Macros Reference)

CURLINE.2 The line number of the current line on the screen

CURLINE.3 The contents of the current line

CURLINE.4 ON if the current line has been changed or inserted in this editing
session; OFF otherwise.

Here, the most interesting variable is CURLINE.3 (the file data that is displayed on
the current line). We shall use it in the next example.

An Example: Moving through a File a Paragraph at a Time
In some files (like the example programs in this book) the writer leaves a blank line
between one paragraph and the next. This next program lets you scroll through the
file a paragraph at a time.

Your XEDIT Profile
The program PROFILE XEDIT is automatically executed every time you start to edit
a new file. Following is an example of a profile that you can use in XEDIT. For more
information on creating XEDIT profiles, refer to the z/VM: XEDIT User’s Guide.

/* PARA XEDIT */
/* This program scrolls forward until the line above */
/* the current line is blank. If end of file is */
/* reached, or if there is an unexpected error, an */
/* audible warning is given. */
do until curline.3 = ""

"EXTRACT /CURLINE"
"NEXT"
if rc ¬= 0 then do

"SOS ALARM" /* an XEDIT subcommand: sound */
/* audible alarm. (bleep) */

exit
end

end

Figure 76. PARA XEDIT

Reading 2

Chapter 7. XEDIT 125

Reading 2 continues in Chapter 8, “Control,” on page 129.

Menus Using XEDIT
�Reading 3�

XEDIT can be used with REXX to generate full-screen menus. A short example of a
full-screen menu is shown in Figure 79 on page 127. It shows the user the name of
the last file edited, lets the user select this file or another, and then calls XEDIT on
the selected file. This example is presented here for the concept only, and

/* PROFILE XEDIT */
/* Profile XEDIT to customize XEDIT environment */
signal on error
/* */
/* set desired pf keys not defaulted */
/* */
"SET PF13 FILE"
"SET PF16 LEFT 20"; "SET PF17 RIGHT 20"
/* */
/* tailor XEDIT to my specifications */
/* */
"SET VERIFY 1 72"
"SET NULLS ON"
"SET FULLREAD ON"
"SET CASE MIXED IGNORE"
"SET WRAP ON"
"SET HEX ON"
"SET AUTOSAVE 10"
"SET MSGLINE ON 3 OVERLAY"
"SET SCALE ON 2"
"SET CURLINE ON 8"
"SET NUM ON"
"SET PREFIX NULL LEFT"
/* */
/* set color for 3279 terminal */
/* */
SC = "SET COLOR"
SC "ARROW PINK" ; SC "CMDLINE RED"
SC "CURLINE WHITE REV" ; SC "FILEAREA TURQ REV"
SC "IDLINE BLUE REV" ; SC "MSGLINE RED BLINK"
SC "PENDING WHITE REV" ; SC "PREFIX YELLOW"
SC "SCALE GREEN REV" ; SC "SHADOW YELLOW BLINK"
SC "STATAREA PINK REV" ; SC "TABLINE RED"
SC "TOFEOF RED REV"
/* */
/* set TRUNC and SERIAL for special files */
/* */
"EXTRACT /RECFM /FTYPE"
if (ftype.1='DIR-UPDT') | (ftype.1='DIRECT')

then SET TRUNC 72
"EXTRACT /TRUNC/"

if (recfm.1='F') & (trunc.1<=72) then SET SERIAL ALL
return

ERROR:
"SOS ALARM"
"MSG" "Unexpected return code" rc "from line" sigl,

"of XEDIT profile"
return

Figure 77. PROFILE XEDIT

Reading 3

126 z/VM: REXX/VM User’s Guide

explanations of the technical details are not given. Please refer to the z/VM: XEDIT
Commands and Macros Reference for information on the XEDIT subcommands and
macros.

The TESTMENU program, following, calls XEDIT using SAMPMENU as a profile. To
try this, create the TESTMENU program and then enter testmenu on the CMS
command line.

/* TESTMENU EXEC */
/* sample exec to show use of an XEDIT full screen menu */
"XEDIT" lastfile edited "(PROF" sampmenu

Figure 78. TESTMENU EXEC

/* SAMPMENU XEDIT */
/* Sample XEDIT full screen menu */
/* First set up control characters needed for the screen */
"COMMAND SET CTLCHAR % ESCAPE"
"COMMAND SET CTLCHAR @ PROTECT RED HIGH"
"COMMAND SET CTLCHAR ¢ PROTECT YELLOW NOHIGH"
"COMMAND SET CTLCHAR ! PROTECT BLUE NOHIGH"
"COMMAND SET CTLCHAR $ NOPROTECT TURQ HIGH"
"COMMAND SET CTLCHAR & PROTECT PINK REV NOHIGH"
/* Get old file ID and screen length */
':1'
"COMMAND EXTRACT /CURLINE/LSCREEN"
parse var curline.3 oldname oldtype oldmode .
"COMMAND SET MSGLINE ON" LSCREEN.1-2 "2 OVERLAY"
message = ""
/* Loop, reading the user response. If ENTER, leave the loop */
do forever

call display_screen /* display the current screen */
ADDRESS CMS 'MAKEBUF'
"COMMAND READ NOCHANGE TAG" /* allow user input, read it */
do queued() /* process stacked lines */

pull key line column string
select

when key="RES" /* reserved line input? */
then select /* yes, reset file ID items */

when line = 8 then oldname = string
when line = 10 then oldtype = string
when line = 12 then oldmode = string

end
when key="CMD" then line column string /* commands go to host*/
when key="ETK" then nop
when key="PFK" /* PF key pressed? */

then if line=3 | line=15 /* yes, 3 or 15? */
then do /* yes, */

ADDRESS CMS 'DROPBUF' /* clear stack */
ADDRESS CMS 'MAKEBUF' /* and quit */
exit

end
else message = "Unsupported PF key" /* wrong PF key used */

otherwise message = "Unsupported function" /* unknown func. */
end

end
if (message = "") & (words(oldname oldtype)=2) then leave

end

Figure 79. SAMPMENU XEDIT (Part 1 of 2)

Reading 3

Chapter 7. XEDIT 127

Reading 3 continues in Chapter 8, “Control,” on page 129.

/* continued... */
/* replace the last file edited with the new file to be edited, */
/* stack the XEDIT command, and quit */
"REPLACE" oldname oldtype oldmode
push "XEDIT" oldname oldtype oldmode
"COMMAND FILE"
exit
/* routine to display the screen */
display_screen:

"SET RESERVED 1 NOH"
"SET RESERVED 2 NOH" '%@ ***%&',

center('Sample XEDIT full screen menu',35),
'%@*** '

"SET RESERVED 3 NOH"
"SET RESERVED 4 NOH"
"SET RESERVED 5 NOH" '%¢ The following file was the last one',

'edited. Press enter to'
"SET RESERVED 6 NOH" '%¢ edit the same file, or key in a new file',

'ID and press enter.'
"SET RESERVED 7 NOH"
"SET RESERVED 8 NOH" '%! File name: %$'left(oldname,8)'%¢ '
"SET RESERVED 9 NOH"
"SET RESERVED 10 NOH" '%! File type: %$'left(oldtype,8)'%¢ '
"SET RESERVED 11 NOH"
"SET RESERVED 12 NOH" '%! File mode: %$'left(oldmode,2)'%¢ '
do i = 13 to lscreen.1-2

"SET RESERVED" i "NOH" /* reserve the rest of the screen */
end
if message ¬= ""
then do
"EMSG" message
message=''
end
"CURSOR SCREEN 8 23"
return

Figure 79. SAMPMENU XEDIT (Part 2 of 2)

128 z/VM: REXX/VM User’s Guide

Chapter 8. Control

A program can be:

v A single list of instructions

v A number of short lists connected by instructions indicating which list is to be
executed next.

In this chapter we discuss how you can steer a course from one short list of
instructions to another.

The chapter is divided into five sections, one for each of the maneuvers that you
might want to accomplish. They are:

Selection To tell the language processor to select for execution one of a
number of lists of instructions, use the IF instruction or the SELECT
instruction.

Loops To tell the language processor to repeat a list of instructions, either
for a specified number of times or so long as some condition is
satisfied, use the DO instruction.

EXIT To tell the language processor to finish executing your program, use
the EXIT instruction.

Calls to subroutines
To tell the language processor to execute a subroutine, then return
and execute the next sequential instruction, use the CALL
instruction. Subroutines usually perform a separate, well-defined
task; and they can be called from more than one place in the main
program.

Jumps To tell the language processor to continue from a different point in
the same file, use the SIGNAL instruction.

Note: Some languages allow GOTO to transfer control to any instruction in a
program. In practice it was found that this permitted too many programming
errors and thus, in modern languages the use of GOTO is restricted. In
REXX, the nearest equivalent to GOTO is SIGNAL. Never use SIGNAL for
constructing loops; always use DO.

Selection
To tell the language processor how to decide which instructions are to be executed
next, you can use the IF instruction or the SELECT instruction.

In this chapter:

Reading 1 immediately following describes:

v The IF instruction and its keywords THEN and ELSE

– How to specify a group of instructions as the object of a
THEN or ELSE keyword

– How to avoid the dangling ELSE

v The SELECT instruction and its keywords WHEN, THEN,
OTHERWISE and END

v The NOP instruction.
Reading 2 skips this section.

© Copyright IBM Corp. 1991, 2009 129

v Continue Reading 2 in “Loops” on page 138.
Reading 3 skips this section.

v Continue Reading 3 in “Loops” on page 138.

The IF Instruction
�Reading 1�

expressionexpression

instruction DO

instruction1
instruction2
instruction3
...

END

TrueTrue

IF IF

THEN THENFalse False

To tell the language processor how to make a decision about a single instruction
use:
IF expression
THEN instruction

The language processor will execute instruction only if expression is true. For
example:
if answer = "YES"
then say "OK!"

The SAY instruction will be executed, only if ANSWER has the value YES.

To tell the language processor to execute a group of instructions use:
DO

instruction1
instruction2
instruction3

...
END

This form of the DO instruction and the END keyword associated with it tell the
language processor to treat the enclosed instructions as a single instruction. You
should indent the enclosed instructions three spaces to the right. This will help a
person reading the program to see that they belong together.

For example:
if answer = "YES"
then do

say "OK. Please enter the file name and file type",

130 z/VM: REXX/VM User’s Guide

"of your input file"
pull fn ft .
"STATE" fn ft /* A CMS command to verify */

/* that file exists. (It */
/* returns zero if it does.) */

if rc = 0 then say "Processing" fn ft
...

end
say "What next?"

If ANSWER is equal to YES, all the instructions will be executed; if not, only the last
instruction will be executed.

The ELSE Keyword
The ELSE keyword looks like this when represented in a flowchart:

expression

IF

True False

When you want the language processor to select from one of two possible
instructions use:
IF expression
THEN instruction1
ELSE instruction2

The language processor will execute instruction2 only if expression is false. For
example, if you wanted:

answer="YES"?

Why not?OK!

True False

you could code:
if answer = "YES"
then say "OK!"
else say "Why not?"

The language processor will display OK! if ANSWER has the value YES; but display Why
not? if ANSWER does not have the value YES.

As before, when selecting a list of instructions, you must use DO ... END to mark
the beginning and end of the list.
if answer = "YES"
then say "OK!"
else do

say "Why not?"
pull excuse

Reading 1

Chapter 8. Control 131

if pos("SORRY",excuse) ¬= 0 /* The REXX function */
/* POS() returns '0' */
/* if 'SORRY' does not */
/* appear in EXCUSE */
/* (see page The POS() Function on page 72).*/

then say "I see"
else say "I just don't understand you"

end

More complicated situations can be handled using a series of IFs. The next chart
shows two successive decisions leading to one of four possible outcomes.

Weather = fine?

Tenniscourt = free?

Play tennis Take a stroll Play chess Play poker

TRUE FALSE

Players = 2?

FALSE FALSETRUETRUE

The best way to code this is:
if weather = fine
then do

if tenniscourt = free
then say "Shall we play tennis?"
else say "Shall we take a stroll?"

end
else do

if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

end

As before, indenting the secondary decisions to the right makes it easier for
someone reading the program to see the structure of the program. If you look
carefully, you can see that the preceding program has the same structure as the
chart above.

The Dangling ELSE
The DO ...; ...; ENDs also help the language processor to keep the ELSEs tied to
the right IFs. Look at this fragment:
/* The dangling ELSE */
/* -------- */
if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"
...

else say "Shall we take our raincoats?"
/* The language processor will take this ELSE to belong */
/* to the nearest preceding IF, but a person */
/* reading the program might easily assume that it */
/* belonged to the first IF. */

Avoid writing code like the preceding example. It is too error-prone. Programs
that have IFs within IFs should use DO ... END. This example pairs THEN DO with
END and THEN with ELSE.

Reading 1

132 z/VM: REXX/VM User’s Guide

if ...
then do

if ...
then do

...

...
end
else do

...

...
end

end
else ...

Test Yourself...
What will the following program do?

Try it! The REXX instruction TRACE Results will help you to see what is happening.

Answers:
Do not be deceived by the indentation! The ELSE is associated with the nearest
preceding IF. The following table can help you determine what happens when
certain values are given to weather, tenniscourt, and players.

Weather = fine?

Play tennis

Play chess Play poker

TRUE FALSE

Players = 2?

TRUE FALSE

Tenniscourt = free?

FALSETRUE

For the values given in the WHATODO EXEC, the following will result:

/* WHATODO EXEC */

/* input data */
weather = "FINE"
tenniscourt = "FREE"
players = 2
/* example of a program that does not use DO ... END */
/* as recommended previously */
trace results
if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"
/* else say "Shall we take a stroll?" DELETED */

else
if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

Reading 1

Chapter 8. Control 133

whatodo
10 *-* if weather = fine

>>> "1"
11 *-* then
12 *-* if tenniscourt = free

>>> "1"
13 *-* then

- say "Shall we play tennis?"
>>> "Shall we play tennis?"

Shall we play tennis?
14 *-* /* else say "Shall we take a stroll?" DELETED */

Ready;

The SELECT Instruction
The SELECT instruction looks like this when represented in a flowchart:

THEN

THEN

THEN

instruction(s)

SELECT

WHEN

WHEN

WHEN

OTHERWISE

END

instruction1

instruction2

instruction3

True

True

True

If you want the language processor to select one of any number of instructions,
use:
SELECT

WHEN expression1 THEN instruction1
WHEN expression2 THEN instruction2
WHEN expression3 THEN instruction3

...
OTHERWISE

instruction
instruction
instruction

...
END

Reading 1

134 z/VM: REXX/VM User’s Guide

v If expression1 is true, instruction1 is executed. After this, processing continues
with the instruction following the END.

v But if expression1 is false, expression2 is tested. Then, if expression2 is true,
instruction2 is executed and processing continues with the instruction following
the END.

v If all of expression1, expression2, and so forth, are false, an OTHERWISE
keyword must be present. Then,

v Processing continues with the instruction following the OTHERWISE.

As before, to tell the language processor to execute a list of instructions following
the THEN keyword, use:
DO

instruction1
instruction2
instruction3

...
END

This form of the DO instruction and the END keyword associated with it tell the
language processor to treat the enclosed instructions as a single instruction.

A DO; ... ; END; group is not required after the OTHERWISE keyword.

Example
Here is a short program that uses SELECT:

Reading 1

Chapter 8. Control 135

Each SELECT has a corresponding END. To make your program easier for people
to read, you should indent everything between the SELECT and the END three
spaces to the right.

The NOP Instruction
A THEN or ELSE keyword must be followed by an instruction. In cases where you
intend that nothing should be done, use a NOP (no operation) instruction.

Here are two examples:

/* CENSUS EXEC */
/* This program requests the user to provide a person's */
/* age and sex. In reply, it displays a person's */
/* status. Persons under the age of 5 are BABIES. */
/* Those aged 5 through 12 are BOYS or GIRLS. */
/* Those aged 13 through 19 are TEENAGERS. */
/* The rest are MEN or WOMEN. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(age,NUMBER) & age >= 0

say "What is the person's age?"
pull age

end
do until sex = "M" | sex = "F"

say "What is the person's sex (M or F)?"
pull sex

end
/*--*/
/* COMPUTE STATUS */
/* */
/* Input: */
/* AGE Assumed to be 0 or a positive number. */
/* SEX "M" is taken to be male; */
/* anything else is taken to be female. */
/* */
/* Result: */
/* STATUS Possible values: BABY, BOY, GIRL, TEENAGER */
/* MAN, WOMAN. */
/*--*/
Select

when age < 5 then status = "BABY"
when age < 13 then do

if sex = "M"
then status = "BOY"
else status = "GIRL"
end

when age < 20 then status = "TEENAGER"
otherwise

if sex = "M"
then status = "MAN"
else status = "WOMAN"

end
say "This person should be counted as a" status

Figure 80. CENSUS EXEC

Reading 1

136 z/VM: REXX/VM User’s Guide

Test Yourself...
1. Write a program that asks the user to enter two words (on the same line) and

computes whether:

v The words are the same (or numerically equal)

v The first word is higher

v The second word is higher.

The comparison must ignore differences in case. For example, A will count as
equal to a.

2. “Thirty days hath September, April, June, and November; all the rest have
thirty-one, excepting February alone”

Write a program that asks the user to specify the month as a number between 1
and 12 and gives the number of days in the month in reply. For month 2, the
reply can be 28 or 29.

Answers:
1. A possible answer is:

/* PILOT EXEC */
/* Example: steering a course */
Say "Where is the harbor?"
pull where
select

when where = "AHEAD" then nop
when where = "PORT BOW" then say "Turn left"
when where = "STARBOARD BOW" then say "Turn right"
otherwise say "Not understood"

end

Figure 81. PILOT EXEC

/* TRUCKER EXEC */
/* Example: using NOP to simplify the presentation of */
/* a set of conditions. */
If gas = "FULL" & oil = "SAFE" & window = "CLEAN"
then nop
else say "Find a gas station!"

Figure 82. TRUCKER EXEC

/* COMPARE1 EXEC */
/* This program requests the user to supply two */
/* words and says which is higher. */
say "Enter two words"
pull word1 word2 .
select

when word1 = word2
then say "The words are the same",

"or numerically equal"
when word1 > word2
then say "The first word is higher"
otherwise
say "The second word is higher"

end

Reading 1

Chapter 8. Control 137

An alternative answer is:

Some people would consider the first solution better, because it is slightly easier
to understand.

2. To say how many days in the month:

Reading 1 continues in “Loops.”

Loops
A loop is a group of instructions that may have to be executed more than one time.

In this section:

Reading 1 immediately following, describes:

/* COMPARE2 EXEC */
/* This program requests the user to supply two */
/* words and says which is higher. */
say "Enter two words"
pull word1 word2 .
if word1 = word2
then say "The words are the same",

"or numerically equal"
else do

if word1 > word2
then say "The first word is higher"
else say "The second word is higher"

end

/* CALENDAR EXEC */
/* This program requests the user to enter a whole */
/* number from 1 through 12 and replies giving the */
/* number of days in that month. */
/*--*/
/* Get input from user */
/*--*/
do until datatype(month,WHOLE),

& month >= 1 & month <= 12
say "Enter the month as a number from 1 through 12"
pull month

end
/*--*/
/* Compute days in month */
/*--*/
select

when month = 9 then days = 30
when month = 4 then days = 30
when month = 6 then days = 30
when month = 11 then days = 30
when month = 2 then days = "28 or 29"
otherwise
days = 31

end
say "There are" days "days in Month" month

Reading 1

138 z/VM: REXX/VM User’s Guide

v Repetitive DO loops
– Control variables
– The BY expression

v Conditional DO loops
– DO FOREVER and LEAVE instructions
– DO WHILE instruction
– DO UNTIL instruction.

Reading 2 on page 147, describes:

v Compound DO instructions

v Leaving a specified loop.
Reading 3 on page 148, describes:

v The ITERATE instruction.

Simple Repetitive Loops
�Reading 1�

To repeat a loop a number of times, use:
DO exprr

instruction1
instruction2
instruction3

...
END

where:

exprr (the expression for repetitor) gives a whole number, which is the number of
times the loop is to be executed.

To make your program easier for people to read, you should indent the instructions
between the DO and the END three spaces to the right.

Here are two examples of repetitive loops, see Figure 83 and Figure 84 on page
140. The first is about preparing for a meeting. Each person attending will require
three documents.

The program that prints the documents is:

The program in Figure 83 prints five sets of documents.

/* HANDOUTS EXEC */
/* To print documents for a meeting: for each person, */
/* the agenda, minutes and accounts are printed one */
/* after the other. Between sets, the CP output */
/* header appears. */
"CP SPOOL PRINT CONT" /* See the following note */
do 5

"PRINT AGENDA DOCUMENT"
"PRINT MINUTES DOCUMENT"
"PRINT ACCOUNTS DOCUMENT"
"SPOOL PRINT CLOSE" /* See the following note */

end
"CP SPOOL PRINT NOCONT"

Figure 83. HANDOUTS EXEC

Reading 1

Chapter 8. Control 139

Note: The following command, which is used in the HANDOUTS EXEC, tells CP to
collect any files that it is asked to PRINT into a batch.
SPOOL PRINT CONT

The batch accumulates until the command SPOOL PRINT CLOSE is issued.
SPOOL PRINT CLOSE causes the batch to be printed, but leaves CONT in
effect. See the z/VM: CP Commands and Utilities Reference for details.

In this next program, the instruction between the DO and the END will be
executed HEIGHT times.

Using a Control Variable
To number each pass through the loop, in such a way that you can use that number
as a variable in your program, use:
DO name = expri [TO exprt]

instruction1
instruction2
instruction3

...
END

where:

name is the control variable. You can use it in the body of the loop. Its value is
changed (in this example, increased by 1) each time you pass through the
loop.

expri (the expression for the initial value) gives the value you want the control
variable to have the first time through the loop.

exprt (the expression for the TO value) gives the value you want the control
variable to have the last time through the loop.

The next diagram shows exactly how the control variable is changed, and how the
decision to leave the loop is made.

/* RECTANGL EXEC */
/* The user is asked to specify the height of a */
/* rectangle (within certain limits). The rectangle */
/* is then displayed on the screen. */
say "Enter the height of the rectangle",

" (a whole number between 3 and 15)."
pull height
select

when ¬datatype(height,WHOLE) then say "Rubbish!"
when height < 3 then say "Too small!"
when height > 15 then say "Too big!"
otherwise

/* draw rectangle */
do height

say copies("*",2*height)
end
say "What a pretty box!"

end

Figure 84. RECTANGL EXEC

Reading 1

140 z/VM: REXX/VM User’s Guide

instruction1
instruction2
instruction3
...

name = expri

True

name > exprt name = name + 1
False

You can use the control variable to compute something different each time through
the loop. In this example, the control variable is called COUNT, and it computes the
width of each row of stars.

After you have left the loop, you can still refer to the control variable. It will always
exceed the value of the TO expression (exprt).

The BY Expression
So far, we have assumed that the control variable will be incremented by 1 each
time through the loop. This is the default. To specify some other value, write:

�� DO name = expri
BYexprb TOexprt

��

where:

exprb (the expression for BY) gives the number that is to be added to name at
the bottom of the loop.

Test Yourself...
1. Using the flowchart on page 140, you should be able to predict what this

program will “say”.

/* TRIANGLE EXEC */
/* This program displays a triangle on the screen. */
/* The user is asked to specify the height of the */
/* triangle. */
say "Enter the height of the triangle",

" (a whole number between 3 and 15)."
pull height
select

when ¬datatype(height,WHOLE) then say "Rubbish!"
when height < 3 then say "Too small!"
when height > 15 then say "Too big!"
otherwise

/* draw triangle */
do count = 1 to height

say copies("*",2*count - 1)
end
say "What an ugly triangle!"

end

Figure 85. TRIANGLE EXEC

Reading 1

Chapter 8. Control 141

2. What about this program?

3. How many lines will this program “say”?

4. How many lines will this program “say”?

Answers:
1. The control variable is changed at the bottom of the loop. The test for leaving is

made after this. So the control variable will be beyond the limit value.
1
2
3
Now we have reached 4

2. If exprb is negative, count down:
10
8
6
Now we have reached 4

3. None (10 already exceeds 8).

4. Eight (on the ninth pass, the EXIT instruction ends the program before the SAY
instruction is reached).

/* 1MORE EXEC */

/* Example: use of a control variable */
do digit = 1 to 3

say digit
end
say "Now we have reached" digit

/* 2LESS EXEC */

/* Example: use of a control variable */
do count = 10 by -2 to 6

say count
end
say "Now we have reached" count

/* 3HUP EXEC */

/* Example: use of a control variable */
do j = 10 to 8

say "Hup! Hup! Hup!"
end

/* 4NOW EXEC */

/* Example: use of a control variable */
do NOW = 1

if NOW = 9 then exit
say NOW

end

Reading 1

142 z/VM: REXX/VM User’s Guide

Conditional Loops: The LEAVE Instruction
Conditional loops continue to be executed so long as some condition is satisfied.
The simplest way to code these loops is to use DO FOREVER and LEAVE.

instruction1
instruction2
instruction3

instruction4
instruction5
instruction6

FalseTrue
finished

then LEAVE

if ...

DO FOREVER

END

The instruction
LEAVE

causes processing to continue with the instruction following the END keyword. For
example, the SUM EXEC in Figure 86 will continue executing as long as the user
enters a number. If you do not enter a number, the LEAVE instruction is executed
and processing continues with the SAY instruction.

/* SUM EXEC */
/* This program adds up the numbers that the user is */
/* invited to enter. When the user enters something */
/* that is not a number, a message is displayed and */
/* the program ends */
total = 0
do forever

say "Enter a number"
pull n
if ¬datatype(n,NUMBER) then leave
total = total + n
say "Total = " total

end
say "'"n"' is not a number. Returning to CMS."

Figure 86. SUM EXEC

Reading 1

Chapter 8. Control 143

Conditional Loops: The DO WHILE Instruction

expression
instruction1
instruction2
instruction3

True

False

DO WHILE

END

To build a conditional loop with the test at the top, use:
DO WHILE exprw

instruction1
instruction2
instruction3

END

where:

exprw (expression for while) is an expression that, when evaluated, must give a
result of 0 or 1.

In some cases, it is easiest to design with the test at the top. If so, you should use
the DO WHILE instruction.

These two fragments will produce the same results.
DO WHILE ¬ finished

instruction1
instruction2
instruction3

END

or
DO FOREVER

if finished then LEAVE
instruction1
instruction2
instruction3

END

Reading 1

144 z/VM: REXX/VM User’s Guide

Conditional Loops: The DO UNTIL Instruction

instruction1
instruction2
instruction3

expression

True

False

DO UNTIL

END

To build a conditional loop with the test at the bottom, use:
DO UNTIL expru

instruction1
instruction2
instruction3

...
END

where:

expru (expression for until) is an expression that, when evaluated, must give a
result of 0 or 1.

Using the DO UNTIL loop allows all instructions to be executed at least once. In
some cases, it is easiest to design with the test at the bottom. If so, you should use
the DO UNTIL instruction.

These two fragments will produce the same results.
DO UNTIL finished

instruction1
instruction2
instruction3

END

or
DO FOREVER

instruction1
instruction2
instruction3
if finished then LEAVE

END

Conditional Loops: The Choice
There are three kinds of conditional loops:

1. The decision is made before processing starts. For example, this program will
fill BATH. But if BATH is already full, the body of the loop will not be executed
and no water will be added.
DO WHILE bath < full

bath = bath + bucket
end

Reading 1

Chapter 8. Control 145

2. The decision is made after the first pass through the loop and again after every
subsequent pass. For instance, requesting valid data from a user.
DO UNTIL datatype(input,NUMBER)

say "Enter a number"
pull input

end

3. The decision is made during each pass. For instance, the decision to leave
might depend on information obtained during the loop.
DO FOREVER

say "Enter an item of data. When there is",
" no more data, enter QUIT"

pull answer
if answer = "QUIT" then leave

... /* process the data */
end

Later, we shall see that a program that reads data from a file should also be
programmed using DO FOREVER and LEAVE.

Note: Be careful about the condition for repeating the loop. For WHILE, the
condition must be TRUE; for UNTIL, it must be FALSE.

Test Yourself...
1. What kind of DO instruction would you use to code the sequence:

Job done?
instruction1
instruction2
instruction3

Job done?
instruction1
instruction2
instruction3

Job done?
...

Job done?
2. What kind of DO instruction would you use to code the sequence:

instruction1
instruction2
instruction3

Job done?
instruction1
instruction2
instruction3

Job done?
...

Job done?

Answers:
1. DO WHILE job ¬= done (The first operation is to test “Is job done?”)

2. DO UNTIL job = done (The first operation is to execute the list of instructions.)

Reading 1 continues in “The EXIT Instruction” on page 149.

Compound DO Instructions
�Reading 2�

Reading 1

146 z/VM: REXX/VM User’s Guide

You can combine one repetitive phrase and one conditional phrase in a single DO
instruction. You should know where in the loop the counters are updated and where
the tests for leaving the loop will be made. This is explained in a diagram in your
z/VM: REXX/VM Reference. (You can find it under the description of the DO
instruction.)

Compound DO instructions can do a lot of useful work. This next example shows
how a simplified version of the POS() function might be implemented as a REXX
function.

Leaving a Specified Loop
Sometimes a program is constructed of loops within loops. When you leave a loop,
you would like to tell the language processor which loop you want to leave. To do
this, give a DO loop a name (that is, specify a control variable in the DO
instruction). If the loop does not contain a control variable already, invent one. For
example
DO outer = 1

...

...
END

is the same, for all practical purposes, as DO FOREVER. In this example, outer is
the control variable for the loop.

Now, to leave a specific loop, put the name of its control variable after the keyword
LEAVE. For example:
DO outer = 1

...
do until datatype(answer,WHOLE)

say "Enter a number. ",
"When you have no more data, enter a blank line"

pull answer
if answer = "" then leave outer

end
...
/* process answer */

end
/* come here when there is no more data */

Reading 2 continues in “Subroutines” on page 150.

/* POSN EXEC */
/* Example: the POSN() function is similar to the */
/* POS(), except that the third argument ("start") */
/* is not allowed */
if arg() ¬= 2
then return /* wrong number of arguments */
if arg(1,omitted) | arg(2,omitted)
then return /* argument was omitted */
parse arg needle,haystack
last = length(haystack), /* compute the rightmost */

-length(needle)+1 /* position that needle could */
/* be found in */

do result = 1 to last, /* Search for needle */
until substr(haystack,result,length(needle)) = needle

end
if result > last then result = 0
return result

Figure 87. POSN EXEC

Reading 2

Chapter 8. Control 147

The ITERATE Instruction
�Reading 3�

To bypass all remaining instructions in the loop and test the ending conditions, use
the ITERATE instruction. Like LEAVE, ITERATE can be introduced by a THEN or
ELSE keyword. But, instead of leaving the loop altogether, the language processor
proceeds with the operations usually done at the bottom of the loop. If an UNTIL
condition has been specified, it is tested; if a control variable has been specified, it
is incremented and tested; and if a WHILE condition has been specified, it is tested.

If tests indicate that the loop is still active, typical processing then continues from
the top of the loop.

For example:
DO j = 1 to limit by delta

instruction1
instruction2
if ...
then do

instruction3
instruction4
ITERATE j

end
instruction5
instruction6

END;

Reading 3

148 z/VM: REXX/VM User’s Guide

instruction1
instruction2

instruction3
instruction4
ITERATE j

instruction5
instruction6

j > limit
No

Yes

j = j + delta

Reading 3 continues in “Jumps” on page 158.

The EXIT Instruction
In this section:

Reading 1 is the entire “EXIT Instruction” section, describing:

v How to leave your program by using the EXIT instruction.

�Reading 1�

To tell the language processor to leave your exec use:

�� EXIT
expression

��

If your exec was started by typing its name on the command line:

v EXIT will take you back to CMS.

v expression must result in a whole number, which CMS will display as a return
code in the Ready message.

For example:

Reading 3

Chapter 8. Control 149

When run, the program in Figure 88 will cause this to be displayed:
fade
Returning to CMS
Ready(00022);

Reading 1 continues in “Subroutines.”

Subroutines
In this section:

Reading 1 immediately following, describes:

v The idea of a subroutine

v The CALL instruction

v How to obtain the arguments passed to a subroutine:
– Using the ARG() function
– Using the ARG instruction
– Using the PARSE ARG instruction

v The RETURN instruction.
Reading 2 on page 156, describes:

v Subroutines and functions
– What are the differences
– What are the similarities

v Parsing the arguments

v External subroutines.

The Idea of a Subroutine
�Reading 1�

A subroutine is a separate piece of code that can be called from more than one
place in your main program.

Subroutines can be in the same file as the main program, or they can be in a
separate EXEC file. The diagram shows a subroutine that is in the same file as the
main program.

/* FADE EXEC */
/* Example: using EXIT with a return code */
say "Returning to CMS"
exit 22

Figure 88. FADE EXEC

Reading 1

150 z/VM: REXX/VM User’s Guide

Main program

Subroutine

CALL mysub

EXIT

MYSUB:

RETURN

A CALL instruction will cause the language processor to look through your program
until it finds the label that marks the start of the subroutine. Processing continues
from there until the language processor finds a RETURN instruction that causes the
language processor to return to the main program.

A subroutine can be called from more than one place in a program. The language
processor always returns to the clause following the CALL instruction from which it
came.

Each CALL instruction can supply data, called arguments, which the subroutine can
use when called. In the subroutine, you can find out what data has been supplied
by using the ARG() function or the ARG instruction.

The CALL Instruction
To direct the language processor to execute a subroutine use:

�� CALL name

�
(1)

argument

��

Notes:

1 A maximum of 20 arguments.
where:

name is the name of the subroutine. The language processor will first
search for the corresponding label in your program. A label consists
of a symbol followed by a colon (:), for example:

name:

Reading 1

Chapter 8. Control 151

If no such label is found, the language processor looks for a built-in
function, exec file, or module file of that name. (To be discussed
later, on page 159.)

argument is an expression. The value of each is computed, and can be
obtained in the subroutine by using the ARG() function.

ARG(1) returns the first argument
ARG(2) returns the second argument
...

You can have up to 20 arguments on a CALL instruction.

You can also obtain the arguments by using the ARG or PARSE
ARG instructions, discussed later.

For example:

This is what appears on the screen:
cheer
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R, R, R!
E, E, E!
X, X, X!
X, X, X!
R...!
E...!

/* CHEER EXEC */
/* Example: calling a subroutine */
do 3

call triple "R"
call triple "E"
call triple "X"
call triple "X"
say

end
say "R...!"
say "E...!"
say "X...!"
say "X...!"
say
say "REXX!"
exit /* end of main program */
/*--*/
/* Subroutine to repeat a shout three times */
/* == */
/* The first argument is displayed on the screen, three */
/* times on one line, with suitable punctuation. */
/*--*/
TRIPLE:
say arg(1)", "arg(1)", "arg(1)"!"
return

Figure 89. CHEER EXEC

Reading 1

152 z/VM: REXX/VM User’s Guide

X...!
X...!
REXX!
Ready;

The EXIT instruction causes a return to CMS. In the program shown in Figure 89,
the EXIT instruction stops the main program from running on into the subroutine.

The ARG Instruction
In your subroutine, you may want to refer to an argument many times; if so, it would
make your program easier to read if the argument had a memorable name, rather
than just ARG(1). To assign the arguments to variables, use the PARSE ARG
instruction or the PARSE UPPER ARG instruction.

For example, if you want the results of the four expressions on the call instruction to
be assigned FLOUR, BUTTER, SUGAR, and COOKIES, you could write:
PARSE ARG flour, butter, sugar, cookies

The other form of the instruction, PARSE UPPER ARG, can be shortened to ARG.
If you wanted the four arguments to be translated to uppercase you could write:
ARG flour, butter, sugar, cookies

Notice that, just as there are commas between the expressions in the CALL
instruction, so there are commas between the symbols in the PARSE ARG or ARG
instruction when it is used in this way.

The RETURN Instruction
The RETURN instruction takes you back to the main routine. Processing continues
with the instruction following the CALL. The full form of the instruction is

�� RETURN
expression

��

where, if expression is specified, it will be assigned to the REXX special variable,
RESULT. (But if expression is omitted, RESULT is dropped.) That is, RESULT is
not assigned a value and thus, when used in an expression, takes on the value of
itself, translated to uppercase (RESULT).

The variable RESULT can be used in an expression by the calling program when it
resumes.

Example
This example shows how CALL passes arguments to a subroutine; ARG assigns
the arguments’ values to variables; RETURN assigns a value to RESULT; and the
main program uses this data.

Reading 1

Chapter 8. Control 153

When to Leave Out the Arguments
If program variables are referred to by the same names both outside and inside an
internal routine (a routine that exists in the same file as the CALL instruction), it is
not necessary to include them as arguments on the CALL or ARG instructions.

However, not including them could make it more difficult for a person reading your
program to understand what your subroutine does. So it will be especially important
in this case to give a list of the arguments in the comments that introduce the
subroutine.

Test Yourself...
This program simulates a children’s race game, of the kind that used to be played
with dice.

Write the subroutine TELL to tell who is winning.

MAKEBOX EXEC

long = 1; wide = 2; high = 1.5 /* the size of the box */
/* required (meters) */

CALL box long, wide, high
│ └────�└────�└──────────────────┐
└──────────────────────────────┐ │

│ │
┌──────────────────────────────────┐ │ │
│
 │ │
│ ┌───�say "Material required =" result, │ │
│ │ "square meters" │ │
│ │ ... │ │
│ │ ... │ │
│ │ EXIT │ │
│ │ │ │
│ │ │ │
│ │ ┌────────────────────────────────────┘ │
│ │
 │
│ │ BOX: │
│ │ /* Computes area of material */ │
│ │ /* required for making a box, */ │
│ │ /* with no lid. Arguments are: */ │
│ │ /* 1. length */ │
│ │ /* 2. width */ │
│ │ /* 3. height */ │
│ │ │
│ │ ┌──────┬──────┬───────────────────┘
│ │

│ │ ARG length, width, height
│ │
│ │ area= length*width, /* base */
│ │ + 2*width*height, /* short sides */
│ │ + 2*length*height /* long sides */
│ │
│ │ RETURN area
│ │�─────┘ │
│�──────────────┘

Reading 1

154 z/VM: REXX/VM User’s Guide

Copy the main program and your subroutine into an exec file and test your
program.

Answer:
A possible solution is:

In this sample solution, there are no arguments on the CALL instruction.
Nevertheless, a person reading the program will still need to know what data the
subroutine is using.

A well-designed subroutine will operate on a clearly defined set of data. To make
your program more readable, you should define this data in comments at the
beginning of the subroutine.

Reading 1 continues in “Jumps” on page 158.

Subroutines and Functions
�Reading 2�

/* RACEGAME EXEC */

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15

a = a + random(1,6) /* Arthur gets first turn */
b = b + random(1,6) /* Now it is Barry's turn */
call tell /* Who's ahead now */

end
exit /* End of main program */

/* RACEGAME EXEC */

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15

a = a + random(1,6) /* Arthur gets first turn */
b = b + random(1,6) /* Now it is Barry's turn */
call tell /* Who's ahead now */

end
exit /* End of main program */
/*--*/
/* Subroutine to display the position */
/* ================================== */
/* INPUT: a (Arthur's score) */
/* b (Barry's score) */
/* RESULT: displayed on user's screen */
/*--*/
TELL:
values = "Arthur =" a"; Barry =" b"; "
select

when a > b then say values "Arthur is ahead"
when b > a then say values "Barry is ahead"
otherwise say values "Neck and neck!"

end
return

Reading 1

Chapter 8. Control 155

You can write your own subroutines (described earlier) and your own functions. You
can also use subroutines and functions written by other people.

What are the differences between subroutines and functions, and what do they
have in common?

The differences are:

v To call a subroutine, you use a CALL instruction:

�� CALL routine

�

,
(1)

argument

��

Notes:

1 A maximum of 20 arguments.
But to call a function, you use a function call:

�� routine

�

()
,

(1)
argument

��

Notes:

1 A maximum of 20 arguments.

v A subroutine need not return a result, but a function must return a result. In a
subroutine, you can write:
RETURN

But in a function you must at least write:
RETURN "" /* This returns a null string */

v A subroutine sets the value of the special variable RESULT. But the result
returned by a function is used in the expression where the function call
appeared.

The similarities are:

v Both use the ARG and PARSE ARG instructions, and the ARG() function, for
obtaining the values of their arguments.

v Both can be either internal (that is, starting with a label in the same file as the
CALL instruction or the function call) or external (that is, in a different file).

v Both have the same search order. When a call to routine is recognized, the
language processor searches for:
1. The label routine: in the same file
2. A REXX function called routine
3. An external routine.

(For full details, see the z/VM: REXX/VM Reference.)

v Both, when they are internal, can use the PROCEDURE instruction (described in
Reading 3, page The PROCEDURE Instruction on page 30).

v Where it is reasonable to do so, functions can be used as subroutines.
Subroutines that return a result can be used as functions.

Reading 2

156 z/VM: REXX/VM User’s Guide

Using a Call of the Other Kind
Where convenient, programs designed as functions can be called as subroutines.
And, if they always return a result, programs designed as subroutines can be called
as functions.

For example, the subroutine QUIET, which we discussed in Figure 64 on page 107,
could be called as a function:
if quiet("STATE" fn ft) = 0
then ...

and the POS() function could be called as a routine:
/* to remove NEEDLEs from haystack */
do forever

call pos needle,haystack
if result = 0
then leave
else haystack = delstr(haystack,result,length(needle))

end

Note: DELSTR() is a REXX built-in function. See the z/VM: REXX/VM Reference
for details.

Parsing the Arguments
Each of the arguments passed by a CALL instruction can be parsed using the
PARSE ARG instruction or the ARG instruction. For example, the instruction:
CALL words "a string of words",5

might be parsed using:
WORDS:
PARSE ARG first second third fourth rest, number

The result would be that:
FIRST gets “a”
SECOND gets “string”
THIRD gets “of”
FOURTH gets “words”
REST gets “”
NUMBER gets “5”

External Subroutines
When we first discussed subroutines, we mentioned only the internal routines. But
subroutines can also exist as a separate exec file.

Reading 2

Chapter 8. Control 157

In an external routine, the variables belonging to the caller are not available to the
subroutine. All the data must be formally passed, using arguments on the CALL
instruction, and all the data must be returned using the RETURN instruction. (If
necessary, the calling routine can PARSE the variable RESULT into a number of
variables.)

For more information about sharing variables, see the GLOBALV command in the
z/VM: CMS Commands and Utilities Reference.

Reading 2 continues in “Jumps.”

Jumps
In this section we discuss instructions that cause the language processor to
continue processing at a different point in your program.

In this section:

Reading 1 immediately following, describes:

v Using the SIGNAL instruction for jumps.
Reading 2 on page 159, describes:

v How to use the SIGNAL instruction for abnormal changes of
control.

Reading 3 on page 159, describes:

v How to set a condition trap.

v How to set a condition trap using the CALL instruction.

v How to use the SIGNAL instruction to set “ON-conditions”.
– SIGNAL ON FAILURE
– SIGNAL ON HALT
– SIGNAL ON NOVALUE
– SIGNAL ON SYNTAX.

v How to obtain information about a current trapped condition.

CALL mysub

/* */

MYSUB EXEC

RETURN

Reading 2

158 z/VM: REXX/VM User’s Guide

The SIGNAL Instruction
�Reading 1�

The SIGNAL instruction can jump (that is, transfer control) to another part of your
program.

If your SIGNAL instruction is in the middle of a program, the language processor
forgets all about the SELECT constructs and DO loops you were in; therefore, you
cannot jump back into or jump around within a DO loop. This usually means that
you can only use SIGNAL for an abnormal end. For other purposes, it is better to
construct your jumps using IF, SELECT, or DO, as described earlier.

Reading 1 continues in Chapter 9, “Input and Output,” on page 165.

Abnormal Changes of Control
�Reading 2�

To tell the language processor to go to another part of the same file, use the
SIGNAL instruction:
SIGNAL label

This causes a jump to the specified label. A label consists of a symbol followed by a
colon (:). The language processor searches from the top of the file for the clause:
LABEL:

Processing continues from there.

Here is an example of an abnormal end using SIGNAL. The SIGNAL instruction
always stores its own line number in the REXX special variable SIGL.
SIGNAL abend
...

EXIT /* end of ordinary code */
/*--*/
/* This code handles abnormal ends */
/*--*/
ABEND:
say "Abnormal end signaled at line" sigl,
||". Cannot continue."
exit

The first EXIT instruction is put there to stop the normal program from running on
into the abnormal end routine.

Reading 2 continues in Chapter 9, “Input and Output,” on page 165.

Conditions and Condition Traps
�Reading 3�

The CALL ON|OFF and SIGNAL ON|OFF instructions modify the flow of execution
in a REXX program by using condition traps. Condition traps are turned on or off
using the ON or OFF subkeywords of the SIGNAL and CALL instructions (see “The
CALL Instruction” on page 151 and “Abnormal Changes of Control”).

Reading 1

Chapter 8. Control 159

Following one of these instructions, a condition trap is set to either ON (enabled) or
OFF (disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to
the routine or label trapname, which is described later. SIGNAL or CALL is used,
depending on whether the most recent trap for the condition was set using SIGNAL
ON or CALL ON respectively.

Condition traps can be set using the CALL ON Condition and SIGNAL ON
Condition syntax described below.

The CALL ON Condition

For information about the CALL Instruction, see page 151.

The CALL ON instruction will turn on trapping of the condition you specify. The
format is:

�� CALL ON ERROR
FAILURE
HALT
NOTREADY

NAME trapname
��

The CALL OFF instruction will turn off any trapping of the condition you specified.
The format is:

�� CALL OFF ERROR
FAILURE
HALT
NOTREADY

��

The SIGNAL ON Condition
For information about the SIGNAL Instruction, see page 159.

The SIGNAL ON instruction will turn on trapping of the condition you specify. The
format is:

�� SIGNAL ON ERROR
FAILURE
HALT
NOTREADY
NOVALUE
SYNTAX

NAME trapname
��

The SIGNAL OFF instruction will turn off any trapping of the condition you specified.
The format is:

�� SIGNAL OFF ERROR
FAILURE
HALT
NOTREADY
NOVALUE
SYNTAX

��

Reading 3

160 z/VM: REXX/VM User’s Guide

Condition Trap Explanations
The conditions and their corresponding events which can be trapped are:

ERROR
raised if any host command indicates an error condition upon return. It is also
raised if any host command indicates failure and neither CALL ON FAILURE
nor SIGNAL ON FAILURE are set. The condition is raised at the end of the
clause that called the command, but will be ignored if the ERROR condition trap
is already in the delayed state.

CALL ON ERROR and SIGNAL ON ERROR trap all positive return codes; and
will trap negative return codes if neither CALL ON FAILURE nor SIGNAL ON
FAILURE are set.

FAILURE
raised if any host command indicates a failure condition upon return, but will be
ignored if the FAILURE condition trap is already in the delayed state; that is, a
failure is currently being handled.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes
from commands.

HALT
raised if an external attempt is made to interrupt execution of the program. The
condition is raised at the end of the clause that was being interpreted when the
interruption took place.

NOTREADY
raised if an error occurs during an input or output operation. This condition is
ignored if the NOTREADY condition trap is already in the delayed state.

NOVALUE
raised if an uninitialized variable is used:
v As a term in an expression
v As the name following the VAR subkeyword of the PARSE instruction
v As an unassigned variable pattern in a parsing template.

This condition may only be specified for SIGNAL ON.

SYNTAX
raised if an interpretation error is detected. This condition may only be specified
for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON or
OFF, and any trap name) of that condition trap. Thus, a SIGNAL ON HALT replaces
any current CALL ON HALT, and so on.

Action Taken When a Condition is Trapped
When a condition trap is currently enabled (ON has been specified), the trap is in
effect. So, when the specified condition occurs, control is passed to the label
corresponding to the trapped condition.

If no explicit trapname was specified, control is passed to the label or routine that
matches the name of the condition itself (ERROR, FAILURE, HALT, NOVALUE, or
SYNTAX).

If trapname was specified following the NAME subkeyword of the CALL ON or
SIGNAL ON instruction, control is passed to the label or routine specified, rather
than the name of the condition.

Reading 3

Chapter 8. Control 161

The sequence of events, once a condition has been trapped, varies depending on
whether a SIGNAL or CALL is executed:

v If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes place
in exactly the same way as usual (see page 159).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to reenable it once the label
is reached. For example, if SIGNAL ON SYNTAX is enabled when a SYNTAX
condition occurs, then if the SIGNAL ON SYNTAX label name is not found a
normal syntax error termination will occur.

v If the action taken is a CALL, the CALL is made in the usual way (see page 151)
except that the special variable RESULT is not affected by the call. If the routine
should RETURN any data, then the returned character string is ignored.

Before the CALL is made, the condition trap is put into a delayed state. This
state persists until the RETURN from the CALL, or until an explicit CALL (or
SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents a
premature condition trap at the start of the routine called to process a condition
trap.

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

The CONDITION Function
The CONDITION function returns the condition information associated with the
current trapped condition. See the CALL ON Condition and the SIGNAL ON
Condition just described for a description of condition traps. Four pieces of
information can be requested:
v The name of the current trapped condition
v Any descriptive string associated with that condition
v The instruction executed as a result of the condition trap (SIGNAL or CALL)
v The status of the trapped condition.

The following parameters can be supplied to select the requested information. Only
the first letter is significant.

Condition name
returns the name of the current trapped condition.

Description returns any descriptive string associated with the current trapped
condition. If no description is available, a null string is returned.

The descriptive string varies, depending on the condition trapped. In
the case of SIGNAL or CALL, the descriptive string that is passed
to the external environment as command results in one of the
following:

ERROR The string that was processed and resulted in the
error condition.

FAILURE The string that was processed and resulted in the
failure condition.

HALT Any string associated with the halt request. This
can be the null string if no string was provided.

NOTREADY The fully-qualified name of the stream being
manipulated when the error occurred and the
NOTREADY condition was raised.

Reading 3

162 z/VM: REXX/VM User’s Guide

NOVALUE The derived name of the variable whose attempted
reference caused the NOVALUE condition.

SYNTAX Any string associated with the error by the
language processor. This can be the null string if no
specific string is provided. Note that the special
variable RC and SIGL provide information on the
nature and position of the processing error.

Instruction returns the keyword for the instruction executed when the current
condition was trapped, being either CALL or SIGNAL. This is the
default if option is not specified.

Status returns the status of the current trapped condition. This can change
during execution, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed.

If no condition has been trapped (that is, there is no current trapped condition), then
the CONDITION function returns a null string in all four cases.

Here are some examples:
CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The condition information returned by the CONDITION function is saved and
restored across subroutine calls (including those caused by a CALL ON
condition trap). Therefore, once a subroutine called because of a CALL ON
trap has returned, the current trapped condition reverts to the current
condition before the CALL took place. CONDITION returns the values it
returned before the condition was trapped.

Congratulations! You have successfully completed Reading 3. Now you can put
your REXX skills into action.

If you want more practice with writing REXX programs, you can review Chapter 10,
“Programming Style and Techniques,” on page 185.

Reading 3

Chapter 8. Control 163

Reading 3

164 z/VM: REXX/VM User’s Guide

Chapter 9. Input and Output

�Reading 1�

REXX can do more than manipulate the information that you have typed at the
keyboard and then process it for display on the screen. REXX can store, access,
print, and organize data outside the program.

In this chapter:

Reading 1 immediately following, describes:
v A stream of information
v File processing
v Writing data to a stream
v Reading data from a stream
v Counting the data remaining
v Handling streams.

Reading 2 on page 174, describes:
v Data streams
v Default streams
v The STREAM function
v Accessing data within a stream
v Techniques for using the I/O functions.

A Stream of Information
In computing, the form of the information is often as important as its content.

A script file, for example contains not only text information, but other information
that you never see, such as details about the structure of the file. This additional
data describes how the data if formatted and printed. The structure of an exec file is
very different from that of a script file—the information takes on other forms. A
command in an exec lets you perform a specific function.

The goal of the REXX language is to keep things as simple as possible. Therefore,
REXX takes the simplest possible view of the information it receives. The simplest
way to look at information is one line at a time.

For example, in a REXX program that reads from a file and then sends the file to a
virtual printer, both the file and the virtual printer are character streams:

Input Stream Output Stream

Text Virtual Printer
┌──────────────┐ ┌─────────┐ ┌───────────────┐
│ It was a dark│ It was... │ A REXX │ │ It was a dark │
│ and gloomy │────────────�│ Program │ ───────────�│ and gloomy │
│ night. │ └─────────┘ │ night. │
└──────────────┘ └───────────────┘

In the preceding diagram:
v The text being read, It was a dark and gloomy night., is the input stream.
v The virtual printer device written to (VIRTUAL PRINTER) is the output stream.

In this discussion, a stream means any source or destination of external information
a REXX program uses. A stream can be a:
v reader file

© Copyright IBM Corp. 1991, 2009 165

v punch
v printer
v SFS file
v minidisk file
v program stack (or external data queue)
v default stream (terminal input buffer and the display).

(For the names of these streams that the input and output functions use, see the
“Input and Output Streams” chapter of the z/VM: REXX/VM Reference.)

The input and output operations of REXX fall into these broad categories:
v Streams of characters
v Lines, or segments of a stream, separated by line end characters.

The way you use data streams in a program depends upon the kind of information
you are working with and what you want to do with it.

File Processing
You begin file processing by putting line data into a more or less permanent form,
such as in simple files on a disk. You already know some ways to create, read, and
write disk files using XEDIT.

In REXX, a set of stream functions that read and write data a single character at a
time or line by line perform stream processing. The first function you will try is one
that writes lines to a file.

Writing Data to a Stream
You can write line or character data to a stream using the LINEOUT and CHAROUT
functions.

LINEOUT (Line Output) Function
To write a line to a file, use the LINEOUT function. The format is:

�� LINEOUT(
name ,

string ,line

) ��

where:

name is the name of the file (that REXX regards as a stream) to which the data is
written.

string is a line of data to be written.

line a line number to set the write position.

The first time a program uses LINEOUT in this way, the file (name) is opened for
writing and the line (string) is written to the end of the stream.

The stream remains open, and each subsequent LINEOUT call writes a new line to
the end of the file (name).

When the program ends, REXX automatically closes name unless you close it
explicitly with the STREAM function or specific forms of CHAROUT and LINEOUT.
Or, you can close name explicitly at any time by omitting the string argument. For
example:

Reading 1

166 z/VM: REXX/VM User’s Guide

LINEOUT(name)

A LINEOUT Example
Figure 90 shows an example of a simple text editor. It writes new text to a file. Look
closely at the use of the LINEOUT function.

You enter a file name, which the PULL instruction then parses and stores in the
variable fileid. As each line is typed:

v The PARSE PULL instruction stores it as a string in the variable line.

v The LINEOUT function (called as a subroutine) writes the string contained in line
to the file name stored in the variable fileid.

v The DO loop continues until you press Enter twice, thereby entering a null string.

v The program then calls LINEOUT with only the file name (closing the file), and
exits.

Calling LINEOUT
LINEOUT is a function call rather than a keyword instruction. That means that it not
only performs a given task (writing data to a file, in this example), but that it also
returns a value of:

v 0 if string was successfully written to name.

v 1 if for any reason string could not be written, for example, if you try to write to a
read-only file.

Your program can use the return value to detect whether something has gone
wrong in the course of writing to a stream.

Note: If you use LINEOUT without the string argument, the return value tells you if
name was successfully closed.

LINEOUT is a function call; therefore, you have a choice about how you can use it.
You can call LINEOUT:

v As part of a REXX instruction. For example, with the keyword SAY:

/* EDDY EXEC */
/* World's smallest editor for CMS minidisk file */
say 'Enter a file name and file type.'
pull fileid
say 'Enter as many lines as you like.',

'To finish, press Enter.'
do forever

parse pull line

if line = '' then /* empty line? */
do

call LINEOUT /* if so, close the file */
exit /* and end the program */
end

/* otherwise, write LINE to the end of the file */
call LINEOUT fileid, line
if result = 1 then leave

end
say 'Error, return code' result
exit

Figure 90. EDDY EXEC

Reading 1

Chapter 9. Input and Output 167

say LINEOUT("mybook text","Chapter 1.") /* displays "0" */
/* if successful */

or as a variable assignment:
ready = LINEOUT("mybook text","Chapter 1.") /* assigns "0" to READY */

/* if successful */

v As a subroutine with arguments (this is true of all function calls). For example:
call LINEOUT "mybook script", "Chapter 1." /* Result=0 if successful */

When you use LINEOUT (or any function call) in this way, the return value of the
function is automatically assigned to the REXX special variable RESULT.

Resetting the Write Position
You can specify a line number to set the write position to the start of a particular
line in a file. This line number must be positive and within the bounds of the file
(although you can specify the line number immediately after the end of the file). A
value of 1 for line refers to the first line in the stream. For example:
LINEOUT(myfile,,1) -> 0 /* now at line 1 */
LINEOUT(myfile,,6) -> 0 /* now at line 6 */

CHAROUT (Character Output) Function
The CHAROUT function writes single-byte characters. The format is:

�� CHAROUT(
name ,

string ,start

) ��

where:

name is the name of the stream to which the character is written

string is a string of characters to write

start is the starting position of a stream of characters.

Like the LINEOUT function, CHAROUT returns 0 if all the characters in the string
(string) are successfully written to the file (name). Unlike LINEOUT, if for any reason
CHAROUT cannot write to the named file (name), it returns the number of
characters that remain unwritten.

CHAROUT is also similar to LINEOUT in that it is more convenient to call it as a
subroutine.

The first time a program uses CHAROUT, the named stream is opened for writing
and the characters are written to the end of the stream. If the write pointer is moved
(using LINEOUT or STREAM), CHAROUT will write over existing data in the line.
The start value for CHAROUT must be 1 (default value). CHAROUT will always
start with the first character in the line.

A CHAROUT Example
The following exec will write out the variable in a do loop using CHAROUT. This
example shows how multiple uses of CHAROUT will continue to write to the same
line. The output of this exec will be one line. If LINEOUT was used, the output
would be 12 separate lines, each with one character.

Reading 1

168 z/VM: REXX/VM User’s Guide

Reading Data from a Stream
If a stream supports reading, you can read characters or lines from a stream using
the LINEIN and CHARIN functions.

LINEIN (Line Input) Function
To read a line from a stream into a REXX program, use the LINEIN function. The
format is:

�� LINEIN(
name ,

line ,count

) ��

where:

name is name of the data stream (such as a file) from which the line is read.

line the read position of the string.

count the number of lines read from the character input stream.

The first time a program calls LINEIN, it opens the named file (name) for reading
and returns the first line of data. The second call to LINEIN, reads the second line
and returns the second line of data, and so on until the program ends (or you close
the stream with LINEOUT). In other words, LINEIN keeps track of its place in the
stream with a kind of “bookmark”, called the read pointer. LINEOUT uses a similar
marker, the write pointer. For more information, see “Accessing Data within a
Stream” on page 181.

Resetting the Read Position
You can select how many lines are displayed. If you type a number larger than the
number of lines in the file, the program cycles back to the beginning. To do this, use
LINEIN with its second and third arguments. For example:
LINEIN(stream,line,count)

The options for line are:
v no argument (the default)—to leave the read position where it is.
v 1—to set the read pointer to the beginning of the stream (line 1).
v n—to point to a line within the bounds of the file

The options for count are:
v 1 (the default)—to read one line and advance the read position.
v 0—to read no lines and not advance the read position.

The first time a program calls LINEIN, it opens the named file:

/* CHAROUT1 EXEC */
file = 'TEST FILE A1' /* File name */
do i=1 to 3 /* First Do Loop */
z = CHAROUT(file,i) /* Write value for i */
do j=9 to 7 by -1 /* Second Do Loop */
y = CHAROUT(file,j) /* Write value for j */
end /* End second Do Loop */

end /* End first Do Loop */
exit

Figure 91. CHAROUT1 EXEC

Reading 1

Chapter 9. Input and Output 169

LINEIN(filename)

So far, LINEIN has included the default values for the second and third arguments
to simply read the next line. By setting 1 for the line and 0 for the count, LINEIN can
reset the read position to the beginning of the stream without reading a line (or
advancing the read position). For example:
LINEIN(filename,1,0)

Because you are not interested in the return value (which would be empty anyway),
you can call LINEIN as a subroutine:
call LINEIN filename,1,0

Figure 92 shows an example calling LINEIN as a subroutine to reset the read
position.

CHARIN (Character Input) Function
You can read characters from a stream into a REXX program with CHARIN. The
format is:

�� CHARIN(
name ,

start ,length

) ��

where:

name is the name of the data stream (such as a file) from which the characters
are read.

start the starting position of the character in the stream.

length the number of single-byte characters to read from the character input
stream.

CHARIN works very much the same as LINEIN, except that CHARIN reads
characters instead of lines.

/* SHOLIN1 EXEC */
/* Displays a given number of lines in a text file */
/* If the given number exceeds the number of lines */
/* in the file then the read position is reset back */
/* to the beginning of the file */
say "Type a file name and file type"
pull fileid
say "Type number of lines to display"
pull howmany
lineno = 1
do howmany

say lineno LINEIN(fileid)
lineno = lineno + 1

if LINES(fileid) = 0 then /* if the end of file is reached */
do

call LINEIN fileid,1,0 /* reset the read position */
say ">>> End of File <<<" /* display end-of-file marker */
lineno = 1 /* reset line counter */
end

end
exit

Figure 92. SHOLIN1 EXEC

Reading 1

170 z/VM: REXX/VM User’s Guide

The start value for CHARIN must always be 1 (the default). Figure 93 shows one
way to find a specific character in the line by using CHARIN. The exec will loop
until the correct character is located, and the position will be written to the screen.

Counting the Data Remaining
You can count the number of lines or characters remaining in your file using LINES
and CHARS.

LINES (Lines Remaining) Function
To find out if any lines remain between the read position and the end of a stream,
use LINES. The format is:

�� LINES(
name

) ��

where:

name is the character input stream

The LINES function returns the following:

0 if no complete lines remain to be read

n if any lines remain, the number remaining.

Figure 94 on page 172 shows an example, where name is a text file, so LINES
would return 0 when the end of the file has been reached.

/* SHOCHAR1 EXEC */
/* */
/* Shows one way to find a specific character in */
/* a line by using CHARIN. The exec will loop */
/* until the correct character is located, and */
/* the position will be written to the screen. */
/* */
/* Assume a file, CHARIN1 TESTDATA A, exists and */
/* contains all of the keyboard characters. */

fileid = 'CHARIN1 TESTDATA A'
char_count = 0
done = 0
say "Type character to locate"
parse pull char
do until done

if chars(fileid) ¬= 0 then
do

in_char = charin(fileid,,1)
char_count = char_count + 1
if in_char = char then done = 1

end
else done = 1

end
if chars(fileid) = 0 then

do
say 'Selected character was not found in the file'

end
else say 'Character' char 'was found in character position' char_count

exit

Figure 93. SHOCHAR1 EXEC

Reading 1

Chapter 9. Input and Output 171

LINEIN has no way of knowing when there are no more lines to read in a stream,
such as when it gets to the end of a file. To know when the read position has
reached the end of the file, use the LINES function before LINEIN.

CHARS (Characters Remaining) Function
To find out if any characters remain in the input stream, user CHARS. The format
is:

�� CHARS(
name

) ��

where:

name is the character input stream.

The CHARS function returns the following:

0 if no characters remain in the stream

1 if at least one character remains in the stream.

CHARS is similar to LINES with respect to reaching the end of the file. CHARS will
return a 0 when the read pointer has reached the end of the file.

Handling Streams
Sometimes you will need to do things with the streams you are using, such as
opening and closing them. These streams can be several things: minidisk files, SFS
files, spool files (reader, printer, and punch), or the program stack. For this
discussion, we will assume that input and output are communicating with a human
user. A character stream might, in fact, have a variety of sources or destinations,
such as files or displays.

/* SHOLIN2 EXEC */
/* Program to display an entire file */
/* exits when end-of-file is reached */

say "Type a file name and file type"
/* get the name of the file */

pull fileid /* from the user */

lineno = 1 /* initialize a counter to display */
/* the line number

do until LINES(fileid) = 0 /* repeat this loop until no lines */
/* remain in the selected file... */

say lineno LINEIN(fileid) /* display the line number, and then */
/* read and display a line of text, */
/* advancing the read position */
/* with each pass though the loop */

lineno = lineno + 1 /* increment the line-number counter */

end
exit /* end the program */

Figure 94. SHOLIN2 EXEC

Reading 1

172 z/VM: REXX/VM User’s Guide

A character stream can be transient or persistent. Transient (also referred to as
dynamic) means that it is considered temporary, for example, the default input
stream or the program stack. Persistent means it is a static form or more
permanent form, for example, a file or data object.

The STREAM function is provided to help you handle streams.

Opening and Closing Files
The STREAM function (see “STREAM Function” on page 178) lets you explicitly
open or close a stream. However, as you have already learned, there are other
ways of opening or closing a stream. Any line or character I/O function implicitly
opens a stream if it is not already open:
v CHARS and LINES implicitly open the stream for writing if possible, reading

otherwise.
v CHARIN and LINEIN implicitly open the stream for reading.
v CHAROUT and LINEOUT implicitly open the stream for writing.
v The STREAM function explicitly opens a stream for reading or writing.

Each time an SFS file is opened, it is associated with a new work unit ID. This also
applies to multiple opens of the same file. The stream then remains open for
subsequent I/O as long as an explicit close is not issued. You can close a stream
with the STREAM function or specific forms of CHAROUT and LINEOUT. If you do
not explicitly close the stream, it remains open until the completion of the last active
REXX program, at which time it is automatically closed. Before closing the stream,
any remaining buffered data from character output operations is written out.

Note: Only SFS and minidisk files can be opened multiple times.

To Summarize
Here is a review of the input and output functions that have been discussed so far.

Use this function To do this

LINEOUT(name,string) To open name and append string (write it to
the end of name). Returns 0 if successful; 1 if
otherwise.

LINEOUT(name,string,line) To open file name, and write string to line.
The existing line will be overwritten.

LINEOUT(name) To close name when writing is completed.
Returns 0 if successful; 1 if otherwise.

CHAROUT(name,string,start) To open file name, and write characters in
string to end of the file starting in position 1.

CHAROUT(name) To close name.

LINEIN(name) or
LINEIN(name,,1)

To open name, read the first line and
advance the read pointer to the second line.

If name is already open, then LINEIN reads
the current line and advances the read
pointer one line ahead.

Reading 1

Chapter 9. Input and Output 173

Use this function To do this

LINEIN(name,1,0) To put the read pointer at the beginning of the
name without reading a line or advancing the
read pointer.

LINEIN(name,1,1) To put the read pointer at the beginning of the
name and specifically read the first line
(advancing the read pointer to the second
line). The action is the same whether or not
name is already open.

LINEIN(name,,0) To open name without reading the first line or
advancing the read pointer. No action is
taken if name is already open.

CHARIN(name,start,length) To open file name and read length number of
characters beginning with the first character
in the line.

CHARIN(name,1,0) To place the read pointer to the beginning of
name without reading a character.

CHARIN(name) To close name.

CHARS(name) To find out if any characters remain in the
stream.

LINES(name) To find out how many lines remain in the
stream.

Table 4 shows the REXX functions that read from and write to a data stream.

Table 4. Read and Write Functions

Read Data Write Data Check for Lines or
Characters
Remaining

Characters CHARIN() CHAROUT() CHARS()

Lines LINEIN() LINEOUT() LINES()

Reading 1 continues in Chapter 10, “Programming Style and Techniques,” on
page 185.

Additional Stream I/O Information
�Reading 2�

In this section you will learn more about:
v Data streams
v Default streams
v STREAM function
v Accessing data within a stream
v Techniques for using the I/O functions.

Reading 1

174 z/VM: REXX/VM User’s Guide

More about Data Streams
REXX regards all information from any file or device as a continuous stream of
single characters. Data read into a REXX program (whether from a disk file, the
keyboard, a device, or another program) is also processed as a character stream.
The same is true for output data that a REXX program writes to a file or other
device. All of these are streams.

Your program can work with the information in a stream one character at a time; or
if the data is in line form, you can manipulate the information from the stream (or
put information into it) line by line.

As shown earlier in this chapter, your REXX programs can access and manipulate
text files by using:

LINEIN() to read a line

LINEOUT() to write a line

LINES() to count the lines remaining in the stream

CHARIN() to read one or more characters

CHAROUT() to write one or more characters

CHARS() to count the characters remaining in the stream.

Default Streams
Each of the I/O functions listed here has as its first argument the name of a stream
that is read or written to. Each of these functions also has a default stream that is
used if you omit the name of a specific stream. The default input stream (for LINEIN
and CHARIN functions) is the terminal input buffer or user input if the terminal
buffer is empty. The default output stream is your terminal.

This means that you can use the LINEIN function to pause processing and read a
line entered at the keyboard, as you can with the PARSE PULL instruction. But note
these differences:

v Unlike PARSE PULL, the LINEIN function reads only keyboard entries,
regardless of whether there are outstanding items on the default data queue.

v LINEIN would cause a VM READ if no string is available in the default input stream.

To understand how this works, use the first file-reading program, SHOLIN2 EXEC
(see Figure 94 on page 172) and add an instruction as shown in Figure 95 on page
176.

Reading 2

Chapter 9. Input and Output 175

Or, you could modify the cycling version of this program, SHOLIN1 EXEC (see
Figure 92 on page 170) to let you choose the number of lines to display. To do this,
put the display routine inside a DO FOREVER loop, as shown in Figure 96 on page
177.

/* SHOLIN3 EXEC */
/* Displays a file one line at a time */
/* as you press Enter; program */
/* ends when the end-of-file is reached */
/* OR if user types any character. */
say "Type a file name and file type"
pull fileid
lineno= 1
do until LINES(fileid) = 0

say lineno LINEIN(fileid)
if LINEIN() \= "" then leave /* waits for user to press Enter */

/* if anything else is typed */
/* (if LINEIN() does not return */
/* an empty string), then the */
/* loop (and the program) ends */

lineno = lineno + 1
end

exit

Figure 95. SHOLIN3 EXEC

Reading 2

176 z/VM: REXX/VM User’s Guide

Parsing Default Input
You can parse the input for individual words, either by using the instruction:
PARSE VALUE LINEIN() WITH var1 var2 ...

For more information about the PARSE instruction and its options, see “Parsing
Variables and Expressions” on page 96. Also, see the z/VM: REXX/VM Reference.

Performing Stream Tasks
You can use the STREAM function to get the following information about a stream:
v To determine if a stream exists
v To determine if a stream is ready for input or output
v To get characteristics of the stream.

You can also use STREAM for more complex input and output tasks:
v Open a stream for reading and writing.
v Close a stream at the end of the operation.
v Query the stream.

/* SHOLIN4 EXEC */
/* Displays a file one line at a time */
/* as you press Enter, or */
/* displays a given number of lines. */
/* Cycles back to the beginning of the */
/* file when the end-of-file is reached */
/* Program ends only when user types */
/* any non-numeric character. */
say "Type a file name and file type"
pull fileid
say "Type a number of lines to display"
say "or press Enter to advance one line"
say "Type any other character to end."
lineno = 1
do forever

howmany = LINEIN() /* pause for user entry and store */
/* it in the variable HOWMANY */

if howmany = "" then howmany = 1 /* pressing Enter */
/* is the same as entering '1' */

if \datatype(howmany,n) then leave /* entering any non-numeric */
/* character ends the program */

do howmany
say lineno LINEIN(fileid)
lineno = lineno + 1

if LINES(fileid) = 0 then
do

call LINEIN fileid,1,0
say ">>> End of File <<<"
lineno = 1
end

end

end
exit

Figure 96. SHOLIN4 EXEC

Reading 2

Chapter 9. Input and Output 177

v Move the pointer.

See “STREAM Function” for examples of STREAM.

STREAM Function
For more intricate and specialized input and output tasks, REXX provides another
function called STREAM. The format is:

�� STREAM(name
State

,
Command,stream_command
Description

��

where:

name is the stream you want to work on. You must specify the stream name.

S the state of the stream

C a command or action to be taken

D a more detailed description

stream_command
is an action to perform. You must use this argument when and only when
you specify C.

The syntax may look a bit complicated at first, because STREAM has a wide variety
of applications, such as:

v The C (Command) operation lets your program select and gain access to a
named stream.

v The S and D (State and Description) operations report the current status of a
stream; that is, whether:
– the stream is READY or NOTREADY for input or output
– it is UNKNOWN (not yet identified)
– an input or output ERROR has occurred.

The following exec will open a file with an LRECL of 80 and fixed format. After the
file is open, the stream is queried (with STREAM OPEN) to verify the file has been
created with the correct parameters. The LRECL and RECFM parameters on the
STREAM OPEN command should only be used with NEW or REPLACE (or
non-existent files). If the file already exists, the LRECL and RECFM will not change
the characteristics of the file. The values on the STREAM OPEN are ignored.

Reading 2

178 z/VM: REXX/VM User’s Guide

Another use of the STREAM command is to move the read or write pointer to a
particular line. In Figure 98 an existing file (with more than two lines) is opened. The
write pointer position will be queried. The STREAM command moves the write
pointer to the second line in the file. (See the z/VM: REXX/VM Reference for
different ways to move the pointer.) The second query should return a 2 to show the
write pointer is now pointing at the second line.

Note: The STREAM LINEPOS should be used with care, especially if the write
pointer is moved. Data may be lost if the wrong line is written over.

For the full syntax of STREAM and the other REXX input and output functions, see
the z/VM: REXX/VM Reference.

Getting Information about a Stream
To determine if a particular stream exists, use the stream command QUERY EXIST
with the STREAM function call. For example:
stream(name,C,'query exists')

Note that the stream command is enclosed in matching quotation marks.

If the stream name exists, then this function call returns the name of the stream.
For example:
test file a1

If the stream name does not exist, then the result is a null string.

/* STREAM EXEC */
SIGNAL ON NOTREADY /* Setup for any problems */
filename = 'OPENTEST FILE A' /* filename */
parse value stream(filename,'C','OPEN LRECL 80 RECFM F') with ok handle

/* Open file with specific format */

say stream(handle,'C','QUERY FORMAT') /* Query to ensure file created */
c = stream(handle,'C','close 2') /* Close the stream */
exit /* End the program */

NOTREADY: /* If a NOTREADY condition occurs */
say stream('STREAM FILE A','D'); /* return description */

Figure 97. STREAM EXEC

/* STREAMLP EXEC */
CALL ON NOTREADY
file = 'TESTIT FILE A' /*File with > 2 lines */
parse value stream(file,'C','OPEN WRITE')with ok handle

/* Open file for write */
say stream(handle,'C','query linepos write') /* Query write pointer */
a = stream(handle,'C','linepos 2 WRITE') /* Move write pointer to */

/* second line of file */
say stream(handle,'C','query linepos write') /* Query write pointer */

/* Should = 2 */
c = stream(handle,'C','close') /* Close the stream */
exit /* End of program */
NOTREADY: /* NOTREADY trap */
say stream('TESTIT FILE A','D'); /* Stream Description */

Figure 98. STREAMLP EXEC

Reading 2

Chapter 9. Input and Output 179

Figure 99 shows an example of a program that reads a file.

You can also query the size of a stream and the date and time of the last edit; see
Figure 100.

Opening and Closing Streams
The functions LINEOUT, LINEIN, CHARIN and CHAROUT do much of their own
housekeeping. They automatically open the streams they work on and leave REXX
to close the stream at the end of a program unless you explicitly close the stream
with the STREAM function or CHAROUT or LINEOUT.

However, there are cases where it is necessary (or at least more prudent) to
explicitly open and close a stream, such as in a program that reads from more than
one device or one that writes to the middle of a file.

You can do this with the STREAM function:
stream(name,c,"open")

This default form opens a stream name for both reading and writing text. To open a
stream for:
v Reading only, add the word read. For example:

/* Open the file for read. */
parse value stream('TEST FILE A','C','OPEN READ') with ok file_handle
if ok ¬= 'READY:' then signal open_error
number_of_lines = lines(file_handle)

/* QRYFILE1 EXEC */
/* For a program that reads a file */
say "Type a file name and file type (or press Enter to exit): "
pull fileid
if fileid = "" then exit
/* Check that the file exists: */
/* if STREAM() returns a null string, */
/* then report the stream not found */
/* and exit.... */
call stream fileid, C, 'query exists'
if result = "" then

do
say "Cannot find" fileid"."
exit

end
/* ...else store the fully-qualified name */
/* (in RESULT) to the variable FILEID. */
else fileid = result
say "Full name is" fileid

Figure 99. QRYFILE1 EXEC

/* QRYFILE2 EXEC */
/* How big and when last changed? */
say "Type a file name and file type (or press Enter to exit): "
pull fileid...
LINECOUNT = stream(fileid,c,'query size')
ledit = stream(fileid,c,'query datetime')
say fileid "is" lines "lines."
say "Last edit of" fileid "was" ledit"."

Figure 100. QRYFILE2 EXEC

Reading 2

180 z/VM: REXX/VM User’s Guide

v Reading and writing, add the word write. For example:
/* Open the file for write. */
parse value stream('TEST FILE A','C','OPEN WRITE') with ok file_handle
if ok ¬= 'READY:' then signal open_error
number_of_lines = lines(file_handle)

When you open a stream in this way, STREAM returns the string READY: if the
stream has been successfully opened. It returns an error message if for any reason
it was unable to open the stream.

The variable returned on the stream opened in file_handle is a unique identifier for
that particular opening of the stream. This is especially important when a named
data stream can be opened more than one time, and a unique identifier is needed
to reference the different stream openings. When the stream is opened implicitly (by
LINEIN or CHARIN, for example), the user is unable to obtain the unique identifier.
In the previous examples, the unique identifier is used for the LINES function. The
unique identifier may be used for any I/O functions other than
stream(filename,'c',open). By using the unique identifier, performance will be
increased.

To explicitly close a stream, use:
stream(name,c,"close")

In this form, STREAM returns the string READY: if the operation is successful, the
string ERROR: if the operation fails.

Accessing Data within a Stream

REXX regards all external data as streams of information. Nonetheless, these
streams can take different forms. A minidisk file, for example, differs from a spool
file in that it has a static, physical form. A minidisk file is one example of a
persistent stream. This means a program can read from or write to anywhere in the
file.

As a program reads a file, REXX keeps a place marker, called the read position,
that points to the next character (or line).

The same is true when writing. REXX maintains a write position that marks the next
place to write.

You can specify another position for the read or write positions by giving additional
arguments on the stream functions LINEIN, LINEOUT, CHARIN, CHAROUT, or by
using the LINEPOS option of the STREAM function (see “STREAM” in the z/VM:
REXX/VM Reference.)

For more information about these functions, see the z/VM: REXX/VM Reference.

A stream of data may be a string of characters separated by line end (LINEEND)
characters. When you open a stream, you can specify the type of file and if
LINEEND characters are important. If the opened stream specified BINARY, it
means that all character codes may be present in the data stream, and no
indication of LINEEND characters will be provided or searched for. If the TEXT
option is specified, it means LINEEND characters are appended to the end of each
line when passing data to the user on character input operations. These LINEEND
characters are never written to the data stream. Line operations are not affected by
this parameter, only character operations. Figure 101 on page 182 shows how a

Reading 2

Chapter 9. Input and Output 181

LINEEND character is inserted:

For more information on LINEEND and TEXT files, see “STREAM” in the z/VM:
REXX/VM Reference.

Techniques For Using REXX I/O Functions
This section addresses some techniques to considered when writing a REXX
program using the REXX I/O functions. Some questions you may have are:

v When should I explicitly open and close streams?

v How do the REXX functions interact with existing CMS I/O facilities such as
EXECIO, XEDIT, and CMS Pipelines?

v How can I code my programs to tolerate errors encountered while performing an
I/O operation?

The following sections address these and other questions.

To Open or not To Open
As you have seen, functions such as LINEIN and LINEOUT allow the REXX
programmer to implicitly open a stream. That is, the functions open the stream on
behalf of the programmer using defaults as appropriate. However, the defaults
sometimes do not satisfy the needs of your program. What if you want to create a
fixed format file? The default creates a variable format file. In this case, you would
need to code the following before writing any lines or characters to the file:
Call STREAM name,'C','OPEN WRITE RECFM F'

It is recommended that you use explicit calls to the STREAM function to open a
stream before doing any I/O.

Note: The exception is the default stream, where an explicit open or close is not
recommended. Explicit opens enhance the logical flow of the program. They
also let the programmer use the “handle” the OPEN command returns in
subsequent I/O operations.

In addition, the program should close any stream it opens before the REXX
program ends. The stream command CLOSE is the recommended way to close a
stream.

/* CHAROUT2 EXEC */
lend= '15'x /* line end character = 15'x' */
file = 'TESTIT FILE A' /* file name */
Z = stream(file,C,'OPEN TEXT lineend 15')/* open with TEXT and lineend */
g = charout(file,'abc'lend'def') /* write abc on one line */

/* write def on next line */
Z = stream(file,C,'CLOSE') /* close the file */
exit /* end the program */

/* Output file would look like: */
/* . */
/* . */
/* abc */
/* def */

Figure 101. CHAROUT2 EXEC

Reading 2

182 z/VM: REXX/VM User’s Guide

REXX I/O and CMS
Your program should do input and output to a given stream exclusively with REXX
or exclusively with the CMS supplied routines. REXX needs to maintain its own
control blocks that are different from the ones CMS maintains. Mixing types of I/O
can cause unpredictable results. One situation in particular, however, could happen
under usual circumstances. CMS should close a stream while REXX is actively
doing I/O on the stream. This would occur when the program is using a shared file
system file, and a rollback happens. The file will no longer be open to REXX, and
any attempted I/O on that file generates an error with a special reason code. In this
case, REXX releases the control block for that file and considers the file closed.

Error Handling
Any REXX program that uses the built-in I/O functions should enable a NOTREADY
condition trap. This lets the program provide more detailed diagnosis information in
the event that one of the I/O functions encounters an error. A sample NOTREADY
condition trap follows:
/* A sample REXX program
Call on NOTREADY
.

NOTREADY:
Say "I/O Error:" CONDITION('D')
Return

Alternate Techniques
For alternate techniques for doing I/O in your programs using CSL, EXECIO, and
PIPE commands, see the following books:
v z/VM: CMS Application Development Guide
v z/VM: CMS Commands and Utilities Reference
v z/VM: CMS Pipelines User’s Guide.

Reading 2 continues in Chapter 10, “Programming Style and Techniques,” on
page 185.

For more complete information about using input and output streams, see the z/VM:
REXX/VM Reference.

Reading 2

Chapter 9. Input and Output 183

184 z/VM: REXX/VM User’s Guide

Chapter 10. Programming Style and Techniques

The method you use for constructing your programs is just as important as the
language you use to write them.

In this chapter:

Reading 1 immediately following, describes:
v Consider the data
v Happy hour with a real program.

Reading 2 on page 188, describes:
v Designing a program: stepwise refinement
v Correcting your program
v Coding style.

Consider the Data
�Reading 1�

When you are faced with the task of writing a program, the first thing to consider is
the data you are required to process. Make a list of the input data—what are the
items and what are the possible values of each? If the items have a kind of
structure or pattern, draw a diagram to illustrate it. Then do the same for the output
data. Study your two diagrams and try to see if they fit together. If they do, you are
well on the way to designing your program.

Next, write the specification that the user will use. This might be a written
specification, a HELP file or both.

Last of all, write your program.

Here is a little example:

You are required to write an interactive program that invites the user to play
“Heads or tails”. The game can be played as long as the user likes. To end the
game the user should reply Quit in answer to the question “Heads or tails?” The
program is arranged so that the computer always wins.

Think about how you would write this program.

The computer starts off with:
Let's play a game! Type "Heads", "Tails",
or "Quit"
and press ENTER.

This means that there are four possible inputs:
v HEADS
v TAILS
v QUIT
v None of these three.

And so the corresponding outputs should be:
v Sorry. It was TAILS. Hard luck!
v Sorry. It was HEADS. Hard luck!
v Ready;
v That’s not a valid answer. Try again!

© Copyright IBM Corp. 1991, 2009 185

And this sequence must be repeated indefinitely, ending with the return to CMS
(Ready;).

Now that you understand the specification, the input data and the output data, you
are ready to write the program.

If you had started off by writing down some instructions without considering the
data, it would have taken you longer.

Test Yourself...
Write the program. If you are careful, it should run the first time!

Answer:

Happy Hour
As this is the end of Reading 1, here is a chance to have some fun.

This is a very simple arcade game. Type it in and play it with your friends. Later on,
you may want to improve it. (We shall discuss this at the end of the second
reading.)

/* CON EXEC */

/* Tossing a coin. The machine is lucky, not the user */
do forever

say "Let's play a game! Type 'Heads', 'Tails'",
"or 'Quit' and press ENTER."

pull answer
select

when answer = "HEADS"
then say "Sorry! It was TAILS. Hard luck!"

when answer = "TAILS"
then say "Sorry! It was HEADS. Hard luck!"

when answer = "QUIT"
then exit

otherwise
say "That's not a valid answer. Try again!"

end
say

end

Reading 1

186 z/VM: REXX/VM User’s Guide

/* CATMOUSE EXEC */
/* The user says where the mouse is to go. But where */
/* will the cat jump? */
say "This is the mouse ----------> @"
say "These are the cat's paws ---> ()"
say "This is the mousehole ------> O"
say "This is a wall -------------> |"
say
say "You are the mouse. You win if you reach",

"the mousehole. You cannot go past"
say "the cat. Wait for him to jump over you.",

"If you bump into him you're caught!"
say
say "The cat always jumps towards you, but he's not",

"very good at judging distances."
say "If either player hits the wall he misses a turn."
say
say "Enter a number between 0 and 2 to say how far to",

"the right you want to run."
say "Be careful, if you enter a number greater than 2 then",

"the mouse will freeze and the cat will move!"
say
/*--*/
/* Parameters that can be changed to make a different */
/* game */
/*--*/
len = 14 /* length of corridor */
hole = 14 /* position of hole */
spring = 5 /* maximum distance cat can jump */
mouse = 1 /* mouse starts on left */
cat = len /* cat starts on right */
/*--*/
/* Main program */
/*--*/
do forever

call display
/*---*/
/* Mouse's turn */
/*---*/
pull move
IF DATATYPE(move,whole) & move >= 0 & move <= 2
then select

when mouse + move > len then nop /* hits wall */
when cat > mouse,

& mouse + move >= cat /* hits cat */
/* continued ... */

Figure 102. CATMOUSE EXEC (Part 1 of 2)

Reading 1

Chapter 10. Programming Style and Techniques 187

Congratulations! You have successfully completed Reading 1. Now, maybe you
want to take a while to put your new skills into action, or maybe you want to start
right in with the second reading.

Reading 2 begins in Chapter 2, “Starting Out with REXX,” on page 5.

Designing a Program
�Reading 2�

Still thinking about method, which is just as important as language, let us take
another look at CATMOUSE EXEC.

then mouse = cat
otherwise /* moves */
mouse = mouse + move

end
IF mouse = hole then leave /* reaches hole */
IF mouse = cat then leave /* hits cat */
/*---*/
/* Cat's turn */
/*---*/
jump = random(1,spring)
IF cat > mouse then do /* cat tries to jump left */

Temp = cat - jump
IF Temp < 1 then nop /* hits wall */
else cat = Temp

end
else do /* cat tries to jump right */

IF cat + jump > len then nop /* hits wall */
else cat = cat + jump

end
IF cat = mouse then leave

end
/*--*/
/* Conclusion */
/*--*/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/* Design note: each position in the corridor occupies */
/* three character positions on the screen. */
/*--*/
display:
corridor = copies(" ",3*len) /* corridor */
corridor = overlay("O",corridor,3*hole-1) /* hole */
IF mouse ¬= len /* mouse in hole? */
then corridor = overlay("@",corridor,3*mouse-1)/* mouse */
corridor = overlay("(",corridor,3*cat-2) /* cat */
corridor = overlay(")",corridor,3*cat)
say " |"corridor"|"
return

Figure 102. CATMOUSE EXEC (Part 2 of 2)

Reading 1

188 z/VM: REXX/VM User’s Guide

The program is about a cat and a mouse and their positions in a corridor. At some
stage their positions will have to be pictured on the screen. The whole thing is too
complicated to think about all at once; the first step is to break it down into:
v Main program: calculate their positions
v Display subroutine: display their positions.

Now let us look at main program. The user (who plays the mouse) will want to see
where everybody is before making a move. The cat will not. The next step is to
break the main program down further, into:
Do forever

call Display
Mouse's move
Cat's move

end
Conclusion

Methods for Designing Loops
The method for designing loops is to ask two questions:
v Will it always end?
v Whenever it terminates, will the data meet the conditions required?

Well, the loop terminates (and the game ends) when:
1. The mouse runs to the hole.
2. The mouse runs into the cat.
3. The cat catches the mouse.

The Conclusion
At the end of the program, the user must be told what happened.
call display
say who won

What Do We Have So Far?
Putting all this together, we have:

Reading 2

Chapter 10. Programming Style and Techniques 189

The method that we have just discussed is sometimes called stepwise refinement.
You start with a specification (which may be incomplete). Then you divide the
proposed program into routines, such that each routine will be easier to code than
the program as a whole. Then you repeat the process for each of these routines
until you reach routines that you are sure you can code correctly at the first attempt.

While you are doing this, keep asking yourself two questions:

v What data does this routine handle?

v Is the specification complete?

Stepwise Refinement: An Example
Granny is going to knit you a warm woolen garment to wear when you go sailing.
This is what she might do.
1. Knit front
2. Knit back
3. Knit left arm
4. Knit right arm
5. Sew pieces together.

Each of these jobs is simpler to describe than the job of knitting a pullover. In
computer jargon, breaking a job down into simpler jobs is called stepwise
refinement.

/*--*/
/* Main program */
/*--*/
do forever

call display
/*---*/
/* Mouse's turn */
/*---*/
...
IF mouse = hole then leave /* reaches hole */
IF mouse = cat then leave /* hits cat */
/*---*/
/* Cat's turn */
/*---*/
...
IF cat = mouse then leave

end
/*--*/
/* Conclusion */
/*--*/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/*--*/
display:
...

Reading 2

190 z/VM: REXX/VM User’s Guide

At this stage, look at the specification again. A sailor might need to put on the
pullover in the dark, quickly, without worrying about the front or back. Therefore, the
front should be the same as the back; and the two sleeves should also be the
same. This could be programmed:
do 2

CALL Knit_body_panel
end
do 2

CALL Knit_sleeve
end
CALL sew_pieces_together

In programming, the best method is to go on refining your program, working from
the top, until you get down to something that is easy to code.

Top down is the best approach.

Reconsider the Data
When you are refining your program, your objective is to make each piece simpler.
This almost certainly means:
v Simpler input data for each segment or routine
v Simpler output data for each segment or routine
v Simpler processing
v And, therefore, simpler code.

If your pieces really are simpler, they will probably have simpler names, too. For
instance:

v Knit cuff

rather than

v Make ribbing for cuffs and waistband.

Correcting Your Program
If you cannot understand why your program is giving wrong results, you can:

v Modify your program so that it tells you what it is doing

v Use some of the REXX interactive trace facilities (See “Tracing” on page 37).

You will gradually learn which of these techniques suits you better.

Modifying Your Program
You can put extra instructions into your program, such as:
...
say "Checkpoint A. x =" x
...
say "End of first routine"
...

Another debug method is:
PIPES REXX VARS / > REXX VARS A

This will put into file REXX VARS A all the values of the variables at the point when
the PIPE command is inserted into the file. See z/VM: CMS Pipelines Reference for
more information.

Reading 2

Chapter 10. Programming Style and Techniques 191

Tracing Your Program
Or you can use the TRACE instruction, described in your z/VM: REXX/VM
Reference.

v To find out where your program is going, use TRACE Labels. The example
shows a program and the trace it gives on the screen.

This gives the trace:
rotate

6 *-* wheel:
8 *-* cog:
10 *-* true:
8 *-* cog:
10 *-* true:
8 *-* cog:
10 *-* true:
6 *-* wheel:
8 *-* cog:
13 *-* false:
8 *-* cog:
13 *-* false:
8 *-* cog:
13 *-* false:
17 *-* done:

Ready;

v To see how the language processor is computing expressions, use TRACE
Intermediates.

v To find out whether you are passing the right data to a command or subroutine,
use TRACE Results.

v To make sure that you get to see nonzero return codes from commands, use
TRACE Errors.

Coding Style
The only sure way of finding out whether a program is correct is to read it.
Therefore, programs must be easy to read. Naturally, easy to read means different
things to different programmers. All we can do here is to give examples of different
styles, and leave you to choose the style you prefer.

/* ROTATE EXEC */
/* Example: two iterations of wheel, six iterations */
/* of cog. On the first three iterations, "x < 2" */
/* is true. On the next three, it is false. */
trace L
do x = 1 to 2
wheel:

do 3
cog:

if x < 2 then do
true:

end
else do

false:
end

end
end
done:

Figure 103. ROTATE EXEC

Reading 2

192 z/VM: REXX/VM User’s Guide

A very good way to get your program checked is to ask a coworker to read it. Be
sure to choose a coding style that your coworkers find easy to read.

Most people would find the following program fragment difficult to read.

This next example is easier to read. It is divided into segments, each with its own
heading. The comments on the right are sometimes called remarks. They can help
the reader get a general idea of what is going on.

/**/
/* SAMPLE #1: A portion of CATMOUSE EXEC (page 187), */
/* not divided into segments and written with no */
/* indentation, and no comments. This style is not */
/* recommended. */
/**/
do forever
call display
pull move
IF datatype(move,whole) & move >= 0 & move <=2
then select
when mouse+move > len then nop
when cat > mouse,
& mouse+move >= cat,
then mouse = cat
otherwise
mouse = mouse + move
end
IF mouse = hole then leave
IF mouse = cat then leave
jump = random(1,spring)
IF cat > mouse then do
IF cat-jump < 1 then nop
else cat = cat-jump
end
else do
IF cat+jump > len then nop
else cat = cat+jump
end
IF cat = mouse then leave
end
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Reading 2

Chapter 10. Programming Style and Techniques 193

This next example has additional features that are popular with some programmers.
Keywords written in uppercase and a different indentation style highlight the
structure of the code; the abundant comments recall the detail of the specification.

/**/
/* SAMPLE #2: A portion of CATMOUSE EXEC (page 187), */
/* divided into segments and written with 'some' */
/* indentation and 'some' comments. */
/**/
/**/
/* Main program */
/**/
do forever

call display
/***/
/* Mouse's turn */
/***/
pull move
IF datatype(move,whole) & move >= 0 & move <=2
then select

when mouse+move > len then nop /* hits wall */
when cat > mouse,

& mouse + move >= cat, /* hits cat */
then mouse = cat
otherwise /* moves */
mouse = mouse + move

end
IF mouse = hole then leave /* reaches hole */
IF mouse = cat then leave /* hits cat */
/**/
/* Cat's turn */
/**/
jump = random(1,spring)
IF cat > mouse then do /* cat tries to jump left */

IF cat - jump < 1 then nop /* hits wall */
else cat = cat - jump

end
else do /* cat tries to jump right */

IF cat + jump > len then nop /* hits wall */
else cat = cat + jump

end
IF cat = mouse then leave

end
/**/
/* Conclusion */
/**/
call display
IF cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Reading 2

194 z/VM: REXX/VM User’s Guide

Congratulations! You have successfully completed Reading 2. Now, maybe you
want to take a while to put your new skills into action, or maybe you want to start
right in with Reading 3.

Reading 3 begins in Chapter 2, “Starting Out with REXX,” on page 5.

/**/
/* SAMPLE #3: A portion of CATMOUSE EXEC (page 187), */
/* divided into segments and written with 'more' */
/* indentation and 'more' comments. */
/* Note commands in uppercase (to highlight logic) */
/**/
/**/
/* Main program */
/**/
DO FOREVER

CALL display
/**********************************/
/* Mouse's turn */
/**********************************/
PULL move
IF DATATYPE(move,whole) & move >= 0 & move <=2

THEN SELECT
WHEN mouse+move > len /* mouse hits wall */

THEN nop /* and loses turn */
WHEN cat > mouse,

& mouse+move >= cat, /* mouse hits cat */
THEN mouse = cat /* and loses game */

OTHERWISE mouse = mouse + move /* mouse ... */
END /* moves to new location */

IF mouse = hole THEN LEAVE /* mouse is home safely */
IF mouse = cat THEN LEAVE /* mouse hits cat (ouch) */
/**********************************/
/* Cat's turn */
/**********************************/
jump = RANDOM(1,spring) /* determine cat's move */
IF cat > mouse /* cat must jump left */

THEN DO
IF cat-jump < 1 /* cat hits wall */

THEN nop /* misses turn */
ELSE cat = cat-jump /* cat jumps left */

END
ELSE DO /* cat must jump right */

IF cat+jump > len /* cat hits wall */
THEN nop /* misses turn */
ELSE cat = cat+jump /* cat jumps right */

END
IF cat = mouse THEN LEAVE /* cat catches mouse */

END
/**/
/* Conclusion */
/**/
CALL display /* on final display */

IF cat = mouse /* who won? */
THEN say "Cat wins" /* ... the cat */
ELSE say "Mouse wins" /* ... the mouse */

EXIT

Reading 2

Chapter 10. Programming Style and Techniques 195

196 z/VM: REXX/VM User’s Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, New York 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1991, 2009 197

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, New York 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain services of z/VM.

198 z/VM: REXX/VM User’s Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 199

http://www.ibm.com/legal/copytrade.shtml

200 z/VM: REXX/VM User’s Guide

Glossary

For a list of z/VM terms and their definitions, see z/VM: Glossary.

The z/VM glossary is also available through the online z/VM HELP Facility. For
example, to display the definition of the term “dedicated device”, issue the following
HELP command:
help glossary dedicated device

While you are in the glossary help file, you can do additional searches:

v To display the definition of a new term, type a new HELP command on the
command line:
help glossary newterm

This command opens a new help file inside the previous help file. You can repeat
this process many times. The status area in the lower right corner of the screen
shows how many help files you have open. To close the current file, press the
Quit key (PF3/F3). To exit from the HELP Facility, press the Return key (PF4/F4).

v To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.

The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 1991, 2009 201

202 z/VM: REXX/VM User’s Guide

Bibliography

See the following publications for additional
information about z/VM. For abstracts of the z/VM
publications, see z/VM: General Information.

Where to Get z/VM Information
z/VM product information is available from the
following sources:

v z/VM Information Center at
publib.boulder.ibm.com/infocenter/zvm/v6r1/
index.jsp

v z/VM Internet Library at www.ibm.com/eserver/
zseries/zvm/library/

v IBM Publications Center at
www.elink.ibmlink.ibm.com/publications/servlet/
pbi.wss

v IBM Online Library: z/VM Collection on DVD,
SK5T-7054

z/VM Base Library

Overview
v z/VM: General Information, GC24-6193

v z/VM: Glossary, GC24-6195

v z/VM: License Information, GC24-6200

Installation, Migration, and
Service
v z/VM: Guide for Automated Installation and

Service, GC24-6197

v z/VM: Migration Guide, GC24-6201

v z/VM: Service Guide, GC24-6232

v z/VM: VMSES/E Introduction and Reference,
GC24-6243

Planning and Administration
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6167

v z/VM: CMS Planning and Administration,
SC24-6171

v z/VM: Connectivity, SC24-6174

v z/VM: CP Planning and Administration,
SC24-6178

v z/VM: Getting Started with Linux on System z,
SC24-6194

v z/VM: Group Control System, SC24-6196

v z/VM: I/O Configuration, SC24-6198

v z/VM: Running Guest Operating Systems,
SC24-6228

v z/VM: Saved Segments Planning and
Administration, SC24-6229

v z/VM: Secure Configuration Guide, SC24-6230

v z/VM: TCP/IP LDAP Administration Guide,
SC24-6236

v z/VM: TCP/IP Planning and Customization,
SC24-6238

v z/OS and z/VM: Hardware Configuration
Manager User’s Guide, SC33-7989

Customization and Tuning
v z/VM: CP Exit Customization, SC24-6176

v z/VM: Performance, SC24-6208

Operation and Use
v z/VM: CMS Commands and Utilities Reference,

SC24-6166

v z/VM: CMS Pipelines Reference, SC24-6169

v z/VM: CMS Pipelines User’s Guide, SC24-6170

v z/VM: CMS Primer, SC24-6172

v z/VM: CMS User’s Guide, SC24-6173

v z/VM: CP Commands and Utilities Reference,
SC24-6175

v z/VM: System Operation, SC24-6233

v z/VM: TCP/IP User’s Guide, SC24-6240

v z/VM: Virtual Machine Operation, SC24-6241

v z/VM: XEDIT Commands and Macros
Reference, SC24-6244

v z/VM: XEDIT User’s Guide, SC24-6245

v CMS/TSO Pipelines: Author’s Edition,
SL26-0018

Application Programming
v z/VM: CMS Application Development Guide,

SC24-6162

v z/VM: CMS Application Development Guide for
Assembler, SC24-6163

v z/VM: CMS Application Multitasking, SC24-6164

v z/VM: CMS Callable Services Reference,
SC24-6165

v z/VM: CMS Macros and Functions Reference,
SC24-6168

© Copyright IBM Corp. 1991, 2009 203

http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

v z/VM: CP Programming Services, SC24-6179

v z/VM: CPI Communications User’s Guide,
SC24-6180

v z/VM: Enterprise Systems Architecture/
Extended Configuration Principles of Operation,
SC24-6192

v z/VM: Language Environment User’s Guide,
SC24-6199

v z/VM: OpenExtensions Advanced Application
Programming Tools, SC24-6202

v z/VM: OpenExtensions Callable Services
Reference, SC24-6203

v z/VM: OpenExtensions Commands Reference,
SC24-6204

v z/VM: OpenExtensions POSIX Conformance
Document, GC24-6205

v z/VM: OpenExtensions User’s Guide,
SC24-6206

v z/VM: Program Management Binder for CMS,
SC24-6211

v z/VM: Reusable Server Kernel Programmer’s
Guide and Reference, SC24-6220

v z/VM: REXX/VM Reference, SC24-6221

v z/VM: REXX/VM User’s Guide, SC24-6222

v z/VM: Systems Management Application
Programming, SC24-6234

v z/VM: TCP/IP Programmer’s Reference,
SC24-6239

v Common Programming Interface
Communications Reference, SC26-4399

v Common Programming Interface Resource
Recovery Reference, SC31-6821

v z/OS: IBM Tivoli Directory Server Plug-in
Reference for z/OS, SA76-0148

v z/OS: Language Environment Concepts Guide,
SA22-7567

v z/OS: Language Environment Debugging
Guide, GA22-7560

v z/OS: Language Environment Programming
Guide, SA22-7561

v z/OS: Language Environment Programming
Reference, SA22-7562

v z/OS: Language Environment Run-Time
Messages, SA22-7566

v z/OS: Language Environment Writing ILC
Applications, SA22-7563

v z/OS MVS Program Management: Advanced
Facilities, SA22-7644

v z/OS MVS Program Management: User’s Guide
and Reference, SA22-7643

Diagnosis
v z/VM: CMS and REXX/VM Messages and

Codes, GC24-6161

v z/VM: CP Messages and Codes, GC24-6177

v z/VM: Diagnosis Guide, GC24-6187

v z/VM: Dump Viewing Facility, GC24-6191

v z/VM: Other Components Messages and
Codes, GC24-6207

v z/VM: TCP/IP Diagnosis Guide, GC24-6235

v z/VM: TCP/IP Messages and Codes,
GC24-6237

v z/VM: VM Dump Tool, GC24-6242

v z/OS and z/VM: Hardware Configuration
Definition Messages, SC33-7986

z/VM Facilities and Features

Data Facility Storage
Management Subsystem for VM
v z/VM: DFSMS/VM Customization, SC24-6181

v z/VM: DFSMS/VM Diagnosis Guide,
GC24-6182

v z/VM: DFSMS/VM Messages and Codes,
GC24-6183

v z/VM: DFSMS/VM Planning Guide, SC24-6184

v z/VM: DFSMS/VM Removable Media Services,
SC24-6185

v z/VM: DFSMS/VM Storage Administration,
SC24-6186

Directory Maintenance Facility for
z/VM
v z/VM: Directory Maintenance Facility

Commands Reference, SC24-6188

v z/VM: Directory Maintenance Facility Messages,
GC24-6189

v z/VM: Directory Maintenance Facility Tailoring
and Administration Guide, SC24-6190

Open Systems Adapter/Support
Facility
v System z10, System z9 and eServer zSeries:

Open Systems Adapter-Express Customer’s
Guide and Reference, SA22-7935

v System z9 and eServer zSeries 890 and 990:
Open Systems Adapter-Express Integrated
Console Controller User’s Guide, SA22-7990

204 z/VM: REXX/VM User’s Guide

v System z: Open Systems Adapter-Express
Integrated Console Controller 3215 Support,
SA23-2247

Performance Toolkit for VM™

v z/VM: Performance Toolkit Guide, SC24-6209

v z/VM: Performance Toolkit Reference,
SC24-6210

RACF® Security Server for z/VM
v z/VM: RACF Security Server Auditor’s Guide,

SC24-6212

v z/VM: RACF Security Server Command
Language Reference, SC24-6213

v z/VM: RACF Security Server Diagnosis Guide,
GC24-6214

v z/VM: RACF Security Server General User’s
Guide, SC24-6215

v z/VM: RACF Security Server Macros and
Interfaces, SC24-6216

v z/VM: RACF Security Server Messages and
Codes, GC24-6217

v z/VM: RACF Security Server Security
Administrator’s Guide, SC24-6218

v z/VM: RACF Security Server System
Programmer’s Guide, SC24-6219

v z/VM: Security Server RACROUTE Macro
Reference, SC24-6231

Remote Spooling
Communications Subsystem
Networking for z/VM
v z/VM: RSCS Networking Diagnosis, GC24-6223

v z/VM: RSCS Networking Exit Customization,
SC24-6224

v z/VM: RSCS Networking Messages and Codes,
GC24-6225

v z/VM: RSCS Networking Operation and Use,
SC24-6226

v z/VM: RSCS Networking Planning and
Configuration, SC24-6227

v Network Job Entry: Formats and Protocols,
SA22-7539

Prerequisite Products

Device Support Facilities
v Device Support Facilities: User’s Guide and

Reference, GC35-0033

Environmental Record Editing
and Printing Program
v Environmental Record Editing and Printing

Program (EREP): Reference, GC35-0152

v Environmental Record Editing and Printing
Program (EREP): User’s Guide, GC35-0151

REXX Compiler
v IBM Compiler and Library for REXX on zSeries:

Diagnosis Guide, SH19-8179

v IBM Compiler and Library for REXX on zSeries:
User’s Guide and Reference, SH19-8160

Bibliography 205

206 z/VM: REXX/VM User’s Guide

Index

Special characters
/ (division operator) 40, 58
// (remainder operator) 40, 58
/* comment delimiter 8
/= (not equal operator) 40, 82
/== (not exactly equal operator) 40, 82
. (as a placeholder) 93
. (in compound symbols) 24
* (multiplication operator) 40, 58
*/ comment delimiter 8
** (exponentiation operator) 40, 64
\> (not greater than operator) 40
\>> (strictly not greater than operator) 40
\< (not less than operator) 40
\<< (strictly not less than operator) 40
\= (not equal operator) 40, 82
\== (not exactly equal operator) 40, 82
% (integer division operator) 40, 58
> (greater than operator) 40
>> (strictly greater than operator) 40
>>= (strictly greater than or equal to operator) 40
>= (greater than or equal to operator) 40
< (less than operator) 40
<< (strictly less than operator) 40
<<= (strictly less than or equal to operator) 40
<= (less than or equal to operator) 40
| (inclusive OR operator) 43, 44
|| (concatenation operator) 40, 68
& (AND operator) 43, 44
&& (exclusive OR operator) 40
#CP I CMS 55
+ (addition operator) 40, 58
+ (prefix operator) 40
= (equal operator) 40, 42
== (exactly equal operator) 40, 82
¬ (NOT operator) 40
¬> (not greater than operator) 40
¬>> (strictly not greater than operator) 40
¬< (not less than operator) 40
¬<< (strictly not less than operator) 40
¬= (not equal operator) 40, 82
¬== (not exactly equal operator) 40, 82

Numerics
1MORE EXEC (exercise) 141
2LESS EXEC (exercise) 142
3HUP EXEC (exercise) 142
4MAT EXEC (exercise) 75
4NOW EXEC (exercise) 142

A
ABBREV function 81
abbreviation of information 81
About This Document xiii
ABRACADA EXEC 55

abuttal 40, 68
accuracy in calculations, changing 65
ACCURATE EXEC 65
action taken when a condition is trapped 161
ADD EXEC 22
ADD2NUM EXEC 18
addition operator 40, 58
ADDRESS instruction 118
alternate techniques for I/O 183
AND operator 43, 44
AREAS EXEC 22
ARG instruction

example 95
explanation 22, 94, 153
function 49
instruction 48
string patterns 95

ARG() function 48
argument

assigning at command prompt 22
CALL instruction 150
function 46, 48
parsing 48, 95, 157
separated by commas 71
subroutine 151
use without names 48
when to leave out 154

arithmetic
checking data 57
explanation 56

ARITHOPS EXEC (exercise) 60
arrangement of words, syntax 12
array

explanation 24, 25
using compound symbols 24
with more than one dimension 33

assembler language functions 53
ASSIGN EXEC 19
assigning

an expression result 22
arguments at command prompt 22
data from a user 21

assignment
examples 19
explanation 11, 18

assumption, XEDIT 6

B
BACKUP EXEC 101
backward movement in a file 122
basic programming concepts 2
beginners 3
blank (concatenation operator) 40, 68
blanks removed 10
buffers 111
built-in functions 2, 47
BY expression 141

© Copyright IBM Corp. 1991, 2009 207

C
CALENDAR EXEC (exercise) 138
CALL

instruction 150
ON Condition 160

calls, using other kinds 157
CATMOUSE EXEC 188
caution, dividing by zero 59
CENSUS EXEC 136
CHANGE EXEC 98
changing scroll key settings 122
character

comparing 80
conversion 84
priority

explanation 36
when comparing 80

sorting 77
strings 9, 39

character strings, manipulating 2
CHARIN (Character Input) function 170
CHAROUT (Character Output) function 168
CHAROUT1 EXEC 169
CHAROUT2 EXEC 182
CHARS (Characters Remaining) function 172
CHECKERS EXEC 34
checking data 57
CHEER EXEC 152
CHITCHAT EXEC 90
clause

and instructions 9
delimiter 11
explanation 6, 11
more than one on a line 11
null 11
one per line 9
separating 11
spanning more than one line 11
that becomes a command 99

closing and opening a stream 180
CMS (Conversational Monitor System)

See Conversational Monitor System (CMS)
coding style 192
column formatting 69
comma to indicate continuation of a clause 11
command

clause that becomes 99
debugging 105
halt interpretation 55
HI 55
issuing to CP 101
SET CMSTYPE HT 106

COMMAND environment 118
command line, getting data from 94
comment

explanation 8
special meaning to CMS 9

communicating with the computer 5
COMPARE function 72, 81
COMPARE1 EXEC (exercise) 137
COMPARE2 EXEC (exercise) 138

comparison
allowing approximation 83
characters 80
exact 82
fuzzy arithmetical 83
numbers 80
operators 40, 42
priority of characters 80
strings 81

compound DO instructions 147
compound symbols

explanation 24
for repeated substitution 15
in an array 24
more than one period 33
stems and tails 24
use of a period 24

computer communicating with user 5
CON EXEC (exercise) 186
concatenation

explanation 68
operator 40, 68

condition
action taken when trapped 161
CALL ON 160
ERROR 161, 162
FAILURE 161, 162
HALT 161, 162
NOTREADY 161, 162
NOVALUE 161, 163
SIGNAL ON 160
SYNTAX 161, 163
traps 159

CONDITION function parameters 162
conditional loops

DO
compound 147
FOREVER instruction 143, 146
UNTIL instruction 145, 146
WHILE instruction 144, 145

explanation 143
LEAVE instruction 143, 147

console stack 111
constants and variables 23
contents of a program 8
contents of this document xiii
continuation

clause 11
expression in SAY instruction 89

Control Program (CP)
commands

obtaining a reply from 116
SPOOL PRINT 140
suppressing messages from 115
using 101

environment 101
explanation 55

control variable 140, 147
conventional notation, specifying 63

208 z/VM: REXX/VM User’s Guide

Conversational Monitor System (CMS)
commands

DROFBUF 114
halt interpretation 8
HI 8, 55
MAKEBUF 114
PIPE 115
SET CMSTYPE HT 106

environment 99
issuing commands to 99
Primer xiii
putting data onto a program stack 109, 113
REXX I/O with 183
suppressing messages from 106
taking data from a program stack 110, 114
using 99

conversations 5
conversion between hexadecimal and decimal

characters 84
COPIES function 69
COPY, XEDIT subcommand 115
copying a string 69
correcting your program 191
COUNT subroutine 31
counting

characters from a stream, CHARS 172
lines from a stream, LINES 171

COUNTING EXEC (exercise) 37
CP (Control Program)

See Control Program (CP)
current line, changing 124

D
dangling ELSE 132
data

counting remaining lines or characters 171
prompting user for 90
putting onto a program stack 109
reading from a stream 169
taking from a program stack 110
types 39, 57
writing to a stream 166

DATATYPE () function 57
DAYS1 EXEC (exercise) 28
DAYS2 EXEC (exercise) 28
debugging 2

commands 105
execs that contain commands 105

decimal number
converting 84
explanation 57

decision making 130
default input stream (STDIN) 175
default input, parsing 177
default output stream (STDOUT) 175
delimiters

clause 11
comment 8

DELWORD function 73
DENTAL XEDIT (macro) 123

derived name 24
designing

a program 188
loops, methods for 189

determining how to handle a symbol 23
DICEY EXEC 40
DIGITS

explanation 65
option of NUMERIC instruction 65

DIGITS EXEC 87
Direct Access Storage Device (DASD) 115
displaying

a variable’s value 19
dividing by zero, caution 59
division operator 40, 58
DO instruction

BY expression 141
conditional loop 143
control variable 140, 147
END keyword 54
FOREVER instruction 143, 146
ITERATE instruction 148
LEAVE instruction 143, 147
non-looping 67, 130
repetitive loops 139
UNTIL instruction 54, 146
WHILE instruction 144, 145

document, purpose xiii
documentss to read xiii
DOZEN EXEC 54
DROP instruction 32
DROPBUF command 115
dropping variables 32
duplicate

names 29
strings 69

E
E (exponent symbol) 60
EDDY EXEC 167
editor

for creating a program 6
ELIST EXEC 100
ELSE keyword

dangling 132
IF instruction 131
NOP instruction 136

END keyword
DO instruction 54
SELECT instruction 134

environments
CMS 99, 118
COMMAND 118
CP 101

equal operator 40, 82
ERASER EXEC 100
ERRAND EXEC 15
ERROR condition 161, 162
error handling with I/O 183
error message 12

Index 209

evaluating expressions
order 36, 40
TRACE instruction 37
using parentheses 37, 41

exact comparison operators 40, 82
exactly equal operator 40, 82
examples and exercises 4
exclusive OR operator 40
exec

1MORE (exercise) 141
2LESS (exercise) 142
3HUP (exercise) 142
4MAT (exercise) 75
4NOW (exercise) 142
ABRACADA 55
ACCURATE 65
ADD 22
ADD2NUM 18
AREAS 22
ARITHOPS 60
ASSIGN 19
BACKUP 101
CALENDAR (exercise) 138
CATMOUSE 188
CENSUS 136
CHANGE 98
CHAROUT1 169
CHAROUT2 182
CHECKERS 34
CHEER 152
CHITCHAT 90
COMPARE1 (exercise) 137
COMPARE2 (exercise) 138
CON (exercise) 186
COUNTING 37
DAYS1 28
DAYS2 28
debugging, that contain commands 105
DENTAL XEDIT (macro) 123
description of your program 9
DICEY 40
DIGITS 87
DOZEN 54
EDDY 167
ELIST 100
ERASER 100
ERRAND 15
EXPONENT (exercise) 66
FADE 150
FAIR 43
file type 9
FUSSY 93
FUZZ 83
GAME 27
HALF 50
HALF XEDIT (macro) 124
HALF2 51
HANDOUTS 139
HELLO 6
HELLO with syntax error 12
HOWDY (exercise) 94

exec (continued)
INVOICE 62
LEFT7 115
LINKHELP 102
LISTPR (exercise) 104
MAKEBOX (partial program) 153
MATH 16
MCDONALD 20
MEASURES 43
MESSY 29
MIX 95
MONTH1 28
MYPROG 75
MYPROG2 (exercise) 97
NEARFULL 114
NEVER 55
NOAH (exercise) 91
NOASSIGN 20
NOFUZZ 83
NOPUNCT 87
ORDCHARS 77
PAGE XEDIT (macro) 123
PAIRS (exercise) 109
PARA XEDIT (macro) 125
PARSING 96
PARSWORD 93
PERSONS 37
PILOT 137
POSN 147
PROFILE XEDIT (macro) 125
PULLIN (exercise) 91
PULLING (exercise) 94
QRYFILE1 180
QRYFILE2 180
RACEGAME (exercise) 154, 155
RAH 12
RECTANGL 140
REFORMAT (exercise) 63
REVERE 74
ROOTS 52
ROTATE 192
RTRACE 39
SAMPMENU XEDIT (macro) 128
SHAGGY 10
SHARE 59
SHOCHAR1 171
SHOLIN1 170
SHOLIN2 172
SHOLIN3 176
SHOLIN4 177
SQRT 51
SQUARE 49
STREAM 179
STREAMLP 179
SUM 143
TABLE1 70
TABLE2 71
TABLE3 72
TAKE 96
TDISK 118
TEN XEDIT (macro) 122

210 z/VM: REXX/VM User’s Guide

exec (continued)
TESTHAL2 51
TESTHALF 50
TESTMENU 127
TESTS 56
TICKETS 32
TOSS 47
TRIANGLE 141
TRUCKER 137
TTRACE 38
TTRUNC 66
TWELVDAY 25
TWOPLUS3 17
VALIDFN 72
VALNUM 57
VENTS 16
WHATDAY 56
WHATDAY2 91
WHATDAY2 (exercise) 91
WHATODO (exercise) 133
WHOAMI (exercise) 13
XE 79
YEP 82

exercise
1MORE EXEC 141
2LESS EXEC 142
3HUP EXEC 142
4MAT EXEC 75
4NOW EXEC 142
ARITHOPS EXEC 60
CALENDAR EXEC 138
COMPARE1 EXEC 137
COMPARE2 EXEC 138
CON 186
COUNTING EXEC 37
DAYS1 EXEC 28
DAYS2 EXEC 28
EXPONENT 66
FAIR EXEC 43
HALF EXEC 50
HALF2 EXEC 51
HOWDY 94
LISTPR 104
MEASURES EXEC 43
MONTH1 EXEC 28
MYPROG2 97
NOAH 91
PAIRS 109
PERSONS EXEC 37
PULLIN 91
PULLING 94
RACEGAME EXEC 154, 155
REFORMAT EXEC 63
running HELLO EXEC 8
TESTHAL2 EXEC 51
TESTHALF EXEC 50
TESTS EXEC 56
TOSS EXEC 47
WHATDAY EXEC 56
WHATDAY2 91
WHATODO EXEC 133

exercise (continued)
WHOAMI EXEC 13

exercises and examples 4
EXIT instruction 103, 149
experienced programmers 3
explaining a program 74
explanation of REXX 1
exponent 60
EXPONENT EXEC (exercise) 66
exponential notation

explanation 60
NUMERIC DIGITS instruction 65
significant digits 65
specifying 63

exponentiation
explanation 64
operator 40

EXPOSE keyword of PROCEDURE instruction 30, 31
expressions

assignment 19
evaluating

order 36, 40
using parentheses 37, 41
using the TRACE instruction 37

explanation 35
IF clause 130
parsing 96
result, assigning 22
text 67
TRUE and FALSE 42

external functions
See external routines

external routines
functions 47, 156
subroutines 156, 157

EXTRACT, XEDIT subcommand 124

F
FADE EXEC 150
FAILURE condition 161, 162
FAIR EXEC (exercise) 43
FALSE expression 42
Features of REXX 1
FIFO (first-in/first-out) 111
figuring out errors 2
file

processing 166
file type of exec 9
finding

phrase in a string 74
string in another string 72

fixed point number
explanation 60
specifying 63

floating-point number
explanation 57, 60
special case 63
specifying 63

FORMAT function 61, 66

Index 211

formatting output
lining up numbers 61
putting in columns 69

forward movement in a file 122
full screen menus 126
function

ABBREV 81
ARG 49
arguments for 46, 48
built-in 47
call 45
calling as a subroutine 167
CHARIN (Character Input) 170
CHAROUT (Character Output) 168
CHARS (Characters Remaining) 172
COMPARE 81
CONDITION 162
COPIES 69
DATATYPE () 57
DELWORD 73
differences with subroutines 156
DIGITS 65
example 49
explanation 45
external 47, 156
FORMAT 61
FUZZ 83
HALF 46
internal 52, 156
LASTPOS 72
LEFT 69
LENGTH 68
LINEIN (Line Input) 169
LINEOUT (Line Output) 166
LINES (Lines Remaining) 171
MAX 46
OVERLAY 76
POS 72
RANDOM 47
returning from 48
RIGHT 69
search order 156
SIGN 65
similarities with subroutines 156
SOURCELINE 74
STREAM 173, 178
SUBSTR 68
SUBWORD 73
SYMBOL 32
techniques for I/O 182
TRANSLATE 87
TRUNC 66
user-written 47, 48
using the ARG instruction 48
VALUE 15
VERIFY 87
WORD 73
WORDINDEX 73
WORDLENGTH 73
WORDPOS 74, 87
WORDS 73

function (continued)
written in Assembler language 53

FUSSY EXEC 93
FUZZ

explanation 83
NUMERIC instruction 83

FUZZ EXEC 83
fuzzy arithmetical comparison 83

G
GAME EXEC 27
general-use programming interface 198
getting

arguments for a function or routine 46, 48
data from the command line 48, 94
data when you are prompted 90
out of loops 54, 147

GLOBALV command, sharing variables 31, 158
GOTO considered harmful 129
greater than

operator 40
or equal to operator 40

groups of instructions 67

H
HALF EXEC (exercise) 50
HALF function 46
HALF XEDIT (macro) 124
HALF2 EXEC (exercise) 51
HALT condition 161, 162
halt interpretation (HI) command 8, 54
halt type (HT) command 106
handling streams 172, 178
HANDOUTS EXEC 139
HELLO EXEC 6
HELLO2 EXEC with syntax error 12
help, providing, to explain a program 74
hexadecimal

converting 84
explanation 84
how to code in REXX 84

HI (halt interpretation) command 54
how to use this book 3
HOWDY EXEC (exercise) 94
HT (halt type) command 106

I
I/O 165, 183

additional stream information 174
alternate techniques 183
default streams 175
error handling 183
functions

CHARIN (Character Input) 170
CHAROUT (Character Output) 168
CHARS (Characters Remaining) 172
LINEIN (Line Input) 169
LINEOUT (Line Output) 166

212 z/VM: REXX/VM User’s Guide

I/O (continued)
functions (continued)

LINES (Lines Remaining) 171
STREAM 178

parsing default input 177
summary 173
techniques for using 182
with CMS 183

IF instruction
ELSE keyword 131
explanation 130
THEN keyword 130
using 7

increasing accuracy in calculations 65
information

abbreviated 81
on a trapped condition 162
where to find xvi

input and output
See I/O

instruction
ADDRESS 118
ARG 48
CALL 150
clause 9
compound DO 147
DO

FOREVER 143
instruction 67
UNTIL 145
WHILE 144

DROP 32
EXIT 149
explanation 11
groups 67
IF 9, 130
INTERPRET 16
ITERATE 148
keyword 9
LEAVE 143
list of, makes a program 5
NOP 136
NUMERIC

DIGITS 65
FUZZ 83

PARSE
ARG 95
PULL 90
VALUE 96
VAR 96

PROCEDURE 30
PULL 9, 90
PUSH 110
QUEUE 110
repeating, loops 53
RETURN 48
SAY 9, 89
SELECT 129, 134
SIGNAL 159
TRACE 37
UPPER 90

integer
division operator 40
explanation 57

intended audience xiii
internal functions

See internal routines
internal routines

functions 52, 156
subroutines 71, 156

INTERPRET instruction 16
INVOICE EXEC 62
issuing commands

DO instruction
END 54

IF instruction
ELSE 131
THEN 130

SELECT instruction
END 134
OTHERWISE 134
THEN 134
WHEN 134

to CMS 99
to CP 101

ITERATE instruction 148

J
jumping through your program 148, 158
justify

left 69
right 69

K
keep blanks between words using quotation marks 10
keyboard input (STDIN) 175
keyword

instructions 6, 9
to manipulate program stack 111

L
label

explanation 11
in a CALL instruction 151

language
CMS 9
EXEC 2 9
for writing execs 9

language processor 1, 5
LASTPOS function 72
leaving

loops 54, 147
your program 149

LEFT function 69
left justified 69
LEFT7 EXEC 115
LENGTH function 68
less than

operator 40

Index 213

less than (continued)
or equal to operator 40

LIFO (last-in/first-out) 111
line, current, changing 124
LINEIN (Line Input) function 169
LINEOUT (Line Output) function 166
LINES (Lines Remaining) function 171
lining up numbers, formatting output 61
LINKHELP EXEC 102
LISTPR EXEC (exercise) 104
literal

string 6, 9
logical operator 44
loops

conditional 143
control variable 140, 147
DO FOREVER instruction 143, 146
DO UNTIL instruction 54, 145
DO WHILE instruction 144, 145
explanation 53, 138
ITERATE instruction 148
LEAVE instruction 143, 147
leaving 54, 147
methods for designing 189
repetitive 139
skipping instructions 148, 158

lowercase to uppercase with PULL instruction 10

M
macro

DENTAL XEDIT 123
HALF XEDIT 124
PAGE XEDIT 123
PARA XEDIT 125
PROFILE XEDIT 125
SAMPMENU XEDIT 128
TEN XEDIT 122

macros 121
MAKEBOX EXEC (partial program) 153
MAKEBUF command 115
manipulating

character strings 2
program stack 111

mantissa 60
math

See arithmetic
MATH EXEC 16
MAX function 46
MCDONALD EXEC 20
MEASURES EXEC (exercise) 43
menu, full screen 126
message examples, notation used in xv
messages

XEDIT, displaying 123
MESSY EXEC 29
minus operator 40, 58
MIX EXEC 95
MONTH1 EXEC (exercise) 28
moving

backward and forward in a file 122

moving (continued)
through a file paragraph by paragraph 125

multiple clauses on a line 11
multiplication operator 40, 58
MYPROG EXEC 75
MYPROG2 EXEC (exercise) 97

N
names and values 18
naming variables 20
NEARFUL EXEC 114
NEVER EXEC 55
NEXT subcommand 123
NOAH EXEC (exercise) 91
NOASSIGN EXEC 20
NOFUZZ EXEC 83
NOP instruction 136
NOPUNCT EXEC 87
not

equal operator 40, 82
exactly equal operator 40, 82
greater than operator 40
less than operator 40

NOT operator 40, 44
notation used in message and response examples xv
NOTREADY condition 161, 162
NOVALUE condition 161, 163
null

clauses 11
response 7

numbers
comparing 80
determining the sign 65
exponential notation 60
fixed point 60
floating point 60
power 64
range 59
rounding 65
truncating 66
types 57
whole 57

NUMERIC
DIGITS instruction 65
FUZZ instruction 83

O
opening and closing a stream 180
operator

comparison 40
explanation 36
list 40
logical 44
prefix 40
priority 36, 40
using parentheses 37, 41

OR operator 43, 44
ORDCHARS EXEC 77

214 z/VM: REXX/VM User’s Guide

order of
evaluation 36, 37, 40
precedence 36

OTHERWISE keyword 134
output format 61, 69
OVERLAY function 76
overlaying one string onto another 76

P
PAGE XEDIT (macro) 123
PAIRS EXEC (exercise) 109
PARA XEDIT (macro) 125
parameters, CONDITION function 162
parentheses 37, 41
PARSE

ARG instruction 95
PULL 90
VALUE instruction 96
VAR instruction 96

parsing
arguments 48, 94, 157
data when you are prompted 90
default input 177
expressions 96
patterns 97
string patterns 95
use of a period 93
variables 96
words 92

PARSING EXEC 96
PARSWORD EXEC 93
patterns used in parsing 97
pausing a program 21
period

as a placeholder in parsing 93
in compound symbols 24

PERSONS EXEC (exercise) 37
phrase 74
PILOT EXEC 137
PIPE command 115
placeholder, period, in parsing 93
plus operator 40, 58
POS function 72
position

read and write 181
resetting read 169
resetting write 168
write and read 181

POSN EXEC 147
power of a number 64
precedence

characters 80
operators 36, 40

prefix operators 40
Primer

CMS xiii
priority

characters 80
operators 36, 40

PROCEDURE instruction
explanation 30
EXPOSE keyword 30

Procedures Language REXX/VM
See REstructured eXtended eXecutor/Virtual

Machine (REXX/VM)
processing

file 166
PROFILE XEDIT 125
PROFILE XEDIT (macro) 125
program

comments 8
contents 8
correcting 191
designing 188
directions, list of 2
editor 6
explanation 129
functions called as subroutines 157
how it works 5
instructions, list of 5
leaving 149
pausing 21
recipe, like a 2, 5
running 7
stack

explanation 109, 110
extensions (buffers) 111
keywords to manipulate 111
putting data onto 109, 113
queue 110
taking data from 110, 114
using 112
with SFS sources 113

stopping 8
typing in 6

programming
style and techniques

coding style 192
concluding the program 189
considering the data 185
correcting the program 191
designing a program 188
I/O 182
methods for designing loops 189

prompting user for data 90
PULL instruction

converts lowercase to uppercase 10
explanation 21, 90
to enter two numbers 18
using 7, 92

PULLIN EXEC (exercise) 91
PULLING EXEC (exercise) 94
purpose of this document xiii
PUSH instruction 110
putting

data onto the program stack 109, 113
words into variables 92

Index 215

Q
QRYFILE1 EXEC 180
QRYFILE2 EXEC 180
qualifications for learning REXX xiii
queue described 110
QUEUE instruction 110, 115
quotation marks 9, 101

literal string 9
to keep blanks between words 10
when to use 101

R
RACEGAME EXEC (exercise) 154, 155
RAH EXEC 12
RANDOM function 47
range of numbers 59
RC special variable 103, 104
read position, resetting 169
reading

characters from a stream, CHARIN 170
data from a stream 169
levels 3
lines from a stream, LINEIN 169
plan 3

Ready; message 7
recipe, program is like a 5
RECTANGL EXEC 140
recursive calls

See CALL
REFORMAT EXEC (exercise) 63
remainder operator 40, 58
repeated substitution 15
repeating

instructions, loops 53
variable names in subroutines 30

repetitive loops 139
reserve place in storage with variables 10
resetting

read position 169
write position 168

response examples, notation used in xv
REstructured eXtended eXecutor/Virtual Machine

(REXX/VM)
and z/VM 2
built-in functions 2
calling CMS commands 2
compared to

BASIC language 3
C language 3
Pascal language 3

debugging 2
for beginners 1
for experienced users 1
format 1
GCS, in xiii
instructions 1
language processor 1
manipulating character strings 2
reference book 4

REstructured eXtended eXecutor/Virtual Machine
(REXX/VM) (continued)

similarity to
EXEC 2 1
PL/I 1

RESULT reserved symbol 153
return codes

CMS and CP 102
explanation 123
REXX 12

RETURN instruction 48, 153
returning from a function or routine 48, 153
REVERE EXEC 74
REXX/VM

See REstructured eXtended eXecutor/Virtual
Machine (REXX/VM)

RIDDLE EXEC (exercise) 91
RIGHT function 69
right justified 69
ROOTS EXEC 52
ROTATE EXEC 192
rounding numbers 39, 65
RTRACE EXEC 39
rules

avoiding duplicate names 29
comments 9
exponentiation 64
starting a REXX program 9
substitution 14

running a program 7

S
SAMPMENU XEDIT (macro) 128
SAY instruction 7, 89
scroll key settings, changing 122
scrolling paragraph by paragraph 125
search order for subroutines and functions 156
SELECT instruction

END keyword 134
example 21, 135
explanation 129, 134
OTHERWISE keyword 134
THEN keyword 134
WHEN keyword 134

separated by commas, arguments 71
separating clauses 11
SET CMSTYPE HT command 106
SET CURLINE subcommand 124
setting variables 20
SFS

See Shared File System(SFS)
SHAGGY EXEC 10
SHARE EXEC 59
Shared File System(SFS)

program stack, use with 113
writing programs with 8

sharing variables 31, 158
SHOCHAR1 EXEC 171
SHOLIN1 EXEC 170
SHOLIN2 EXEC 172

216 z/VM: REXX/VM User’s Guide

SHOLIN3 EXEC 176
SHOLIN4 EXEC 177
SIGL

special variable 104
storing line numbers 105, 159

SIGN function 65, 87
SIGNAL instruction

example 107
explanation 105, 159
ON condition 160
restrictions 159
usage 159

signed number 57
significant digits 65
skipping instructions in a loop 148, 158
sorting

characters 76
SOURCELINE function 74
special variables

RC 104
Result 104
SIGL 104

specifying
conventional (fixed point) notation 63
exponential (floating point) notation 63

splitting
clauses 11
data 92

SPOOL PRINT, CP command 140
SQRT EXEC 51
SQUARE EXEC 49
square root function 51
stack described 110
statement

See clause
STDIN (default input stream) 175
STDOUT (default output stream) 175
stem

and tails of compound symbols 24
stopping a program 8
storage

consideration xiii
reserve place with variables 10

stream
getting information about 177, 179
handling 172
of information 165
opening and closing 180
reading data from 169
tasks to perform 177
writing data to 166

STREAM EXEC 179
STREAM function 173, 178
STREAMLP EXEC 179
streams 165
streams, handling 178
strictly

greater than operator 40
greater than or equal to operator 40
less than operator 40
less than or equal to operator 40

strictly (continued)
not greater than operator 40
not less operator 40

string
comparing 81
copying 69
duplicating 69
examples 9
explanation 9
literal 9
overlaying 76
patterns in parsing 95

style, coding 192
subcommands in XEDIT 121
subroutines

ARG instruction 153
arguments for 151
COUNT 31
differences with functions 156
example 30, 71
explanation 150
external 156, 157
formatting output 71
internal 71, 156
PROCEDURE instruction 30
protecting variables 30
repeating variable names 30
RETURN instruction 153
search order 156
sharing variables 31
similarities with functions 156

substituting
compound symbols 15
suppressing

FILE NOT FOUND 119
from CMS commands 106
from CP commands 115

symbols 14
variables 15

substitution
repeated 15
rules 14

SUBSTR function 68
substring 68
subtraction operator 40, 58
SUBWORD function 73
SUM EXEC 143
suppressing

messages from CMS commands 106
messages from CP commands 115

symbol
compound 24
determining

how to handle 23
if it is a variable 32

duplicate names of 29
explanation 18
substituting 15
variables as 23

SYMBOL function 32
SYNTAX condition 161, 163

Index 217

syntax diagrams, how to read xiii
syntax error

example 12
explanation 12
FORMAT function 61

T
TABLE1 EXEC 70
TABLE2 EXEC 71
TABLE3 EXEC 72
tables 69
tabulating text output 69, 71
TAKE EXEC 96
taking data from a program stack 110, 114
TDISK EXEC 118
techniques for using I/O functions 182
TEN XEDIT (macro) 122
term 36
terminal input buffer 111
TESTHAL2 EXEC (exercise) 51
TESTHALF EXEC (exercise) 50
TESTMENU EXEC 127
TESTS EXEC (exercise) 56
text expressions 67
THEN keyword

IF instruction 130
NOP instruction 136
SELECT instruction 134

things you need xiii
TICKETS EXEC 32
TOSS EXEC (exercise) 47
TRACE

Errors 105
instruction 37
Intermediate results 37
Normal 37
Results 37

tracing
example 37
explanation 37
order 39

TRANSLATE function 87
translating

between character, hexadecimal, decimal 84
character sets 83, 87
examples 84
to uppercase 10, 90
TRANSLATE function 87
VERIFY function 87

traps, condition 159, 161
TRIANGLE EXEC 141
TRUCKER EXEC 137
TRUE expression 42
TRUNC function 65
truncating numbers 65
TTRACE EXEC 38
TTRUNC EXEC 66
TWELVDAY EXEC 25
TWOPLUS3 EXEC 17
types of data 39

typing in a program 6

U
UPPER instruction 81, 90
uppercase translation 10, 90
user-written functions 47, 48

V
VALIDFN EXEC 72
VALNUM EXEC 57
VALUE function 15
values and names 18
variable

as symbols 23
constants 23
dropping 32
example 20
explanation 6, 10, 11, 17, 18
length 68
naming conventions 20
parsing 96
protecting 30
setting 20, 92
sharing between routines 31
special

RC 104
Result 104
SIGL 104

substituting 15
value, displaying 19
XEDIT, known to 124

VENTS EXEC 16
VERIFY function 87
VM/REXX

See REstructured eXtended eXecutor/Virtual
Machine (REXX/VM)

W
warning, dividing by zero 59
what

this document contains xiii
you should know xiii

WHATDAY EXEC (exercise) 56
WHATDAY2 EXEC 91
WHATODO EXEC (exercise) 133
WHEN keyword 134
where to find more information xvi
WHOAMI EXEC exercise 13
whole numbers 57
word

explanation 77
functions using 77
parsing 92

WORD() function 73, 77
WORDINDEX function 73
WORDLENGTH function 73
WORDPOS function 74
words not interpreted 8

218 z/VM: REXX/VM User’s Guide

WORDS() function 73, 77
write position, resetting 168
writing

a line to a file, LINEOUT 166
characters to a file, CHAROUT 168
data to a stream 166
execs, languages for 9
lines to the screen 89

X
XE EXEC 79
XEDIT

assumption 6
EXTRACT subcommand 124
generating full screen menus 126
macros

DENTAL XEDIT 123
examples 122
explanation 122
HALF XEDIT 124
naming 122
PAGE XEDIT 123
PARA XEDIT 125
PROFILE XEDIT 125
return codes 122
SAMPMENU XEDIT 128
TEN XEDIT 122

messages 123
NEXT subcommand 123
profile 125
SET CURLINE subcommand 124
subcommands 121

Y
YEP EXEC 82

Index 219

220 z/VM: REXX/VM User’s Guide

����

Program Number: 5741-A07

Printed in USA

SC24-6222-00

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	How to Read Syntax Diagrams
	Message and Response Notation

	Where to Find More Information

	How to Send Your Comments to IBM
	If You Have a Technical Problem

	Chapter 1. Introduction
	What is REXX?
	Features of REXX
	REXX and z/VM

	About Programming
	The Reading Plan
	If You Have Never Written a Computer Program...
	If You Are Already Familiar with Another Language...
	Exercises and Examples
	The REXX Reference

	Chapter 2. Starting Out with REXX
	How a Program Works
	Conversations
	Typing in a Program
	Running a Program
	Stopping a Program
	Test Yourself...

	What Goes into a Program
	Comments in Programs
	Comments with Special Meaning to CMS

	Keyword Instructions
	Clauses

	Literal Strings
	Uppercase Translation
	Variables

	Clauses
	When Does a Clause End?

	Syntax Errors
	Test Yourself...
	Answers:

	Substitution Rules

	Repeated Substitution
	The VALUE() Function
	Compound Symbols
	The INTERPRET Instruction

	Chapter 3. Variables
	What Are Variables?
	Names and Values

	Assignments
	Displaying a Variable′s Value
	Choosing Names for Variables
	Example: Setting Variables
	Test Yourself...
	Answers:

	Other Assignments
	Assigning User Input
	Assigning an Expression Result

	Variables as Symbols
	Constants and Variables

	Compound Symbols
	Stems and Tails
	Derived Names
	Creating an Array
	Test Yourself...
	Answers:

	Avoiding Duplicate Names
	How Much Should You Tell Your Subroutine?
	The PROCEDURE Instruction
	The PROCEDURE EXPOSE Instruction

	The Existence of Variable Names
	The SYMBOL() Function
	The DROP Instruction

	Arrays with More Than One Dimension

	Chapter 4. Expressions
	Operators
	Operators and Terms
	Order of Evaluation
	Parentheses
	Test Yourself...
	Answers:

	Tracing
	Data Types
	Prefix Operators
	Priority of Operators
	Using Parentheses
	Test Yourself...
	Answers:

	True and False
	Comparisons
	Using True and False
	The Equal Sign (=)
	The AND (&) Operator
	The OR (|) Operator
	Test Yourself...
	Answers:

	Logical Operators
	The NOT (¬, \) Operator
	The AND (&) Operator
	The OR (|) Operator

	Test Yourself...
	Answers:

	Functions
	The Idea of a Function
	Built-in Functions
	User-Written Functions
	Test Yourself...
	Answers:

	Writing Your Own Functions
	ARG Instruction
	The ARG() Function
	RETURN Instruction
	Test Yourself...
	Answers:

	A Square Root Function
	Internal Functions
	Functions Written in Assembler Language

	Loops
	The DO Instruction
	A DO UNTIL Loop
	Getting Out of Loops
	Test Yourself...
	Answers:

	Arithmetic
	Numbers
	Checking Your Input
	Addition, Subtraction, Multiplication
	Division
	Range of Numbers
	Exponential Notation
	Test Yourself...
	Answer:

	Formatting Numeric Output
	Specifying Conventional (Fixed Point) Notation
	Specifying Exponential (Floating Point) Notation
	A Special Case

	Test Yourself...
	Answers:

	Exponentiation
	The NUMERIC DIGITS Instruction
	The SIGN() Function
	Rounding and Truncation
	Test Yourself...
	Answers:

	Groups of Instructions
	Text
	Concatenation
	The SUBSTR() Function
	The LENGTH() Function
	The COPIES() Function
	The LEFT() Function
	The RIGHT() Function
	Arranging Your Output in Columns
	Test Yourself...
	Answers:

	Using a Subroutine to Simplify Tabulation
	The POS() Function
	Example
	Words
	The WORDPOS() Function
	Providing Help
	Test Yourself...
	Answers:

	The OVERLAY() Function
	The WORDS() and WORD() Functions

	Comparisons
	General
	Numbers
	Characters
	Test Yourself...
	Answers:

	The COMPARE() Function
	The ABBREV() Function
	Test Yourself...
	Answers:

	Exact Comparisons
	Fuzzy Arithmetical Comparisons

	Translation
	Hexadecimal
	Conversion
	Character Sets
	The VERIFY() Function

	Chapter 5. Conversations
	The SAY Instruction
	The PULL Instruction
	The UPPER Instruction
	Test Yourself...
	Answers:

	Parsing Words
	The Period as a Placeholder
	Test Yourself...
	Answers:

	Getting Data from the Command Line
	Mixed Case
	Recognizing Options
	String Patterns
	Parsing Variables and Expressions
	Test Yourself...
	Answer:

	Parsing Using Patterns

	Chapter 6. Commands
	Issuing Commands to CMS and CP
	Clauses That Become Commands
	When to Use Quotation Marks
	CP Commands
	Summary
	Return Codes
	Special Variables
	Test Yourself...
	Answer:

	Debugging Individual Commands
	Debugging Execs That Contain Commands
	Making a Common Routine for Handling Return Codes
	Getting Messages from a Repository File
	How to Suppress Messages Issued by CMS Commands
	A Useful Subroutine
	Test Yourself...
	Answer:

	Using the Program Stack
	Definitions
	Buffers
	How to Use the Program Stack
	Example: A CMS Command That Puts Data onto the Program Stack
	Example: A CMS Command That Requires Data from the Program Stack

	CP Commands
	How to Suppress Messages Issued by CP Commands
	How to Obtain the Reply from a CP Command

	The COMMAND Environment

	Chapter 7. XEDIT
	XEDIT Subcommands and Macros
	XEDIT Macros
	Naming of XEDIT Macros
	Example: Changing the Settings of the Scroll Keys
	Return Codes
	Messages

	The EXTRACT Subcommand
	The Current Line
	An Example: Moving through a File a Paragraph at a Time

	Your XEDIT Profile
	Menus Using XEDIT

	Chapter 8. Control
	Selection
	The IF Instruction
	The ELSE Keyword
	The Dangling ELSE
	Test Yourself...
	Answers:

	The SELECT Instruction
	Example
	The NOP Instruction
	Test Yourself...
	Answers:

	Loops
	Simple Repetitive Loops
	Using a Control Variable
	The BY Expression
	Test Yourself...
	Answers:

	Conditional Loops: The LEAVE Instruction
	Conditional Loops: The DO WHILE Instruction
	Conditional Loops: The DO UNTIL Instruction
	Conditional Loops: The Choice
	Test Yourself...
	Answers:

	Compound DO Instructions
	Leaving a Specified Loop
	The ITERATE Instruction

	The EXIT Instruction
	Subroutines
	The Idea of a Subroutine
	The CALL Instruction
	The ARG Instruction
	The RETURN Instruction
	Example
	When to Leave Out the Arguments
	Test Yourself...
	Answer:

	Subroutines and Functions
	Using a Call of the Other Kind
	Parsing the Arguments
	External Subroutines

	Jumps
	The SIGNAL Instruction
	Abnormal Changes of Control

	Conditions and Condition Traps
	The CALL ON Condition
	The SIGNAL ON Condition
	Condition Trap Explanations

	Action Taken When a Condition is Trapped

	The CONDITION Function

	Chapter 9. Input and Output
	A Stream of Information
	File Processing
	Writing Data to a Stream
	LINEOUT (Line Output) Function
	A LINEOUT Example
	Calling LINEOUT
	Resetting the Write Position

	CHAROUT (Character Output) Function
	A CHAROUT Example

	Reading Data from a Stream
	LINEIN (Line Input) Function
	Resetting the Read Position

	CHARIN (Character Input) Function
	Counting the Data Remaining
	LINES (Lines Remaining) Function
	CHARS (Characters Remaining) Function

	Handling Streams
	Opening and Closing Files

	To Summarize
	Additional Stream I/O Information
	More about Data Streams
	Default Streams
	Parsing Default Input

	Performing Stream Tasks
	STREAM Function
	Getting Information about a Stream
	Opening and Closing Streams

	Accessing Data within a Stream

	Techniques For Using REXX I/O Functions
	To Open or not To Open
	REXX I/O and CMS
	Error Handling
	Alternate Techniques

	Chapter 10. Programming Style and Techniques
	Consider the Data
	Test Yourself...
	Answer:

	Happy Hour
	Designing a Program
	Methods for Designing Loops
	The Conclusion
	What Do We Have So Far?
	Stepwise Refinement: An Example
	Reconsider the Data

	Correcting Your Program
	Modifying Your Program
	Tracing Your Program

	Coding Style

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation and Use
	Application Programming
	Diagnosis

	z/VM Facilities and Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility for z/VM
	Open Systems Adapter/Support Facility
	Performance Toolkit for VM™
	RACF® Security Server for z/VM
	Remote Spooling Communications Subsystem Networking for z/VM

	Prerequisite Products
	Device Support Facilities
	Environmental Record Editing and Printing Program

	REXX Compiler

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

